

Table of Contents

EXERCISE 1: Harnessing Wind Power2
EXERCISE 2: Utilizing Solar Energy10
EXERCISE 3: The Impact of CO ₂ Footprint and Implementing Reduction Strategies
EXERCISE 1: Water Electrolyzer28
EXERCISE 2: Proton-exchange membrane fuel cell34
EXERCISE 3: Modern batteries40
Example: Sustainable Technologies in Science Education - Part 2. Teaching Unit via Project-Based Learning46
THEORETICAL BACKGROUND48
Example: Biomimicry Nanofabrics & Environmental Industry Practices
Example: Atmospheric Water Harvesting56
Example: Solar Powered Food Dryer67

EXERCISE 1: Harnessing Wind Power

DESCRIPTION

Exploring the intricacies of wind energy holds immense importance in our quest for sustainable and renewable energy sources. By delving into this topic, we gain insights into the vast potential of harnessing wind power and its pivotal role in shaping the future of clean energy.

Understanding the historical context, current applications, and future projections of wind energy equips us with knowledge essential for addressing global energy challenges and fostering a more environmentally conscious world. This exploration underscores the significance of embracing innovative solutions that blend technology, environmental considerations, and scientific advancements to create a sustainable and harmonious relationship with our planet.

DIDACTIC-METHODICAL COMMENTARY

Harnessing Wind Power offers an engaging platform for students to delve into the realm of renewable energy and environmental sustainability. This topic encourages an interdisciplinary approach, integrating concepts from physics, environmental science, and engineering. By exploring the principles behind wind energy conversion and the design of wind turbines, students can develop a deeper understanding of the technological advancements driving the renewable energy sector.

The didactic approach involves a combination of theoretical learning and hands-on experimentation. Students can explore the physics of wind energy through interactive simulations and practical activities. Additionally, field trips to wind farms or virtual tours can provide real-world context and insights into the practical applications of harnessing wind power. Collaborative projects and group discussions further enhance learning outcomes, fostering teamwork and critical thinking skills. Overall, this topic empowers students to become informed global citizens, equipped to address pressing environmental challenges and advocate for sustainable energy solutions.

EXAMPLE RESOURCES FOR EXPERIMENTAL WORK IN STEM ENVIRONMENT ON THE TOPIC "HARNESSING WIND POWER":

Resource 1: <u>Wind Turbine Model Kit</u>. Build a small-scale wind turbine model to understand the basic principles of wind energy conversion.

Resource 2: <u>Wind Speed Anemometer Kit</u>.Construct an anemometer device to measure wind speed and explore its role in assessing wind energy potential.

Resource 3: <u>Virtual Wind Farm Simulation Software</u>. Explore virtual wind farms to understand turbine placement and optimize energy production strategies.

SAMPLE INVESTIGATIVE QUESTIONS ON THE TOPIC INTENDED FOR PROJECT ACTIVITIES IN STEM ENVIRONMENT:

- 1. How do wind turbine designs vary for different wind conditions and energy output requirements?
- 2. What are the environmental impacts associated with the installation and operation of onshore and offshore wind farms?
- 3. How does the integration of wind power into the energy grid affect overall grid stability and reliability?
- 4. What are the economic considerations in developing and maintaining wind energy projects compared to traditional fossil fuel-based power plants?
- 5. How do advancements in materials science contribute to the development of more efficient and durable wind turbine components?
- 6. What are the challenges and opportunities for community-owned wind energy projects in promoting local renewable energy production?
- 7. How can wind energy be combined with other renewable energy sources, such as solar and hydroelectric power, to create hybrid energy systems?
- 8. What are the potential impacts of climate change on future wind patterns and wind energy generation?
- 9. How can wind energy technologies be adapted and scaled for use in developing countries and remote regions with limited access to traditional energy sources?
- 10. What policies and regulations are necessary to promote the widespread adoption of wind energy and accelerate the transition to a low-carbon energy future?

Resource 1

WIND TURBINE MODEL KIT

BRIEF INFORMATION ABOUT THE LEARNING RESOURCE

Subjects	Chemistry, Physics, Biology, Information Technologies
Age	Students
Time for execution	2 hours

This learning resource is a hands-on educational kit designed to help students understand the principles of wind energy and the functionality of wind turbines. The kit includes all the necessary materials and instructions for students to build their own working model of a wind turbine. Through assembly and experimentation, students will learn about the components of a wind turbine, how wind energy is converted into electricity, and the factors that affect turbine performance. The kit provides an engaging and interactive way for students to explore renewable energy concepts and gain practical experience in STEM subjects.

INTRODUCTION AND THEORETICAL BASIS

The introduction to the Wind Turbine Model Kit provides students with an overview of the importance of wind energy as a renewable resource and its role in sustainable energy production. Students will learn about the increasing global demand for clean energy alternatives and the significance of harnessing wind power to mitigate climate change and reduce dependence on fossil fuels. Theoretical concepts related to wind energy conversion, including aerodynamics, rotor design, and electrical generation, are introduced to lay the groundwork for understanding how wind turbines operate. By delving into the theoretical basis of wind energy, students will develop a deeper appreciation for the scientific principles behind renewable energy technologies and their potential to address environmental challenges.

RATIONALE FOR CONDUCTING THE EXPERIMENT

The Wind Turbine Model Kit experiment lesson offers students a hands-on opportunity to explore the practical aspects of wind energy generation and its application in real-world scenarios. By engaging in this experiment, students can gain a deeper understanding of the fundamental principles underlying wind turbine technology and its role in sustainable energy production. Through practical experimentation, students will investigate various factors affecting wind turbine performance, such as blade design, wind speed, and turbine placement, and analyze their impact

on electricity generation. This experiment also fosters critical thinking skills as students evaluate data, draw conclusions, and propose solutions to optimize wind turbine efficiency. Ultimately, by conducting this experiment, students will develop a comprehensive understanding of the challenges and opportunities associated with harnessing wind power and its implications for addressing global energy needs.

INVESTIGATIVE TASKS TO BE EXECUTED

- Blade Design Experiment: Students will investigate the effect of different blade designs on wind turbine performance by constructing wind turbine models with varying blade shapes and sizes. They will measure the rotational speed and power output of each turbine design under controlled wind conditions to determine the most efficient blade configuration.
- 2. Wind Speed Analysis: Students will analyze the relationship between wind speed and electricity generation by recording the power output of the wind turbine model at different wind speeds. They will use an anemometer to measure wind speed and observe how changes in wind velocity impact turbine performance.
- 3. Turbine Placement Study: Students will explore the influence of turbine placement on energy production by positioning the wind turbine model in different locations relative to a simulated wind source. They will measure and compare the power output of the turbine when placed in various positions to identify the optimal placement for maximizing energy capture.
- 4. Load Variation Experiment: Students will investigate the effect of varying electrical loads on wind turbine performance by connecting different resistive loads to the turbine output. They will measure the voltage and current across the load resistor to calculate power output and analyze how changes in electrical load affect turbine operation.

Hypothesis: As we implement energy-saving strategies such as adjusting blade angles and optimizing turbine placement, we expect to observe a decrease in energy consumption and a corresponding reduction in CO_2 emissions.

INVESTIGATIVE EXPERIMENT

EXPERIMENT 1: INVESTIGATING THE EFFECT OF DIFFERENT BLADE DESIGNS ON WIND TURBINE PERFORMANCE

Required materials:

- Wind turbine model kit with interchangeable blades
- Anemometer
- Data logger or recording device
- Stopwatch or timer
- Notebook / electronic table for recording observations

Procedure:

- 1. Set up the wind turbine model kit in a location with consistent wind flow.
- 2. Begin by attaching one type of blade to the turbine and ensuring it is securely fastened.
- 3. Use the anemometer to measure the wind speed at the turbine location.
- 4. Start the turbine and record the electricity generated over a set period, using the data logger.
- 5. Repeat steps 2-4 with each type of blade included in the kit.
- Compare the electricity generation data for each blade design and analyze the differences in performance.
- 7. Record your observations and findings in the notebook / electronic table.

EXPERIMENT 2: ANALYZING THE RELATIONSHIP BETWEEN WIND SPEED AND ELECTRICITY GENERATION

Required materials:

- Wind turbine model kit
- Anemometer

- Data logger or recording device
- Stopwatch or timer
- Notebook / electronic table for recording observations

Procedure:

- 1. Set up the wind turbine model kit in an area with varying wind speeds.
- 2. Use the anemometer to measure the wind speed at regular intervals.
- Start the turbine and record the electricity generated during each interval, using the data logger.
- 4. Plot a graph showing the relationship between wind speed and electricity generation.
- Analyze the data to identify any patterns or correlations between wind speed and electricity output.
- 6. Record your observations and conclusions in the notebook / electronic table.

EXPERIMENT 3: EXPLORING THE INFLUENCE OF TURBINE PLACEMENT ON ENERGY PRODUCTION

Required materials:

- Wind turbine model kit
- Open area with varying wind conditions
- Anemometer
- Data logger or recording device
- Stopwatch or timer
- Notebook / electronic table for recording observations

Procedure:

1. Set up the wind turbine model kit in different locations, varying the distance from obstructions such as buildings or trees.

- 2. Use the anemometer to measure the wind speed at each location.
- Start the turbine and record the electricity generated over a set period, using the data logger.
- Compare the electricity generation data for each location and analyze the impact of turbine placement on energy production.
- 5. Record your observations and conclusions in the notebook / electronic table.

EXPERIMENT 4: INVESTIGATING THE EFFECT OF VARYING ELECTRICAL LOADS ON WIND TURBINE PERFORMANCE

Required materials:

- Wind turbine model kit
- Resistors or other electrical loads of varying resistance
- Voltmeter
- Data logger or recording device
- Stopwatch or timer
- Notebook / electronic table for recording observations

- 1. Set up the wind turbine model kit and connect it to a resistive load, such as a resistor.
- 2. Measure the voltage output of the turbine using the voltmeter.
- Record the voltage output for each level of electrical load, adjusting the resistance as needed.
- Start the turbine and record the electricity generated over a set period, using the data logger.
- Analyze the relationship between electrical load and turbine performance, considering factors such as voltage output and power generation.
- 6. Record your observations and conclusions in the notebook / electronic table.

REFERENCES

Bossanyi, E. (2003). Wind turbine technology: Principles and design. Oxford University Press.

Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook. John Wiley & Sons.

Chiras, D. (2009). Wind power basics: A green energy guide. New Society Publishers.

El-Sharkawi, M. A. (2017). Wind energy: An introduction. CRC Press.

Gipe, P. (2009). Wind power: Renewable energy for home, farm, and business. Chelsea Green Publishing.

https://www.mozaweb.bg/en/Extra-3D scenes-Wind power station-9964

https://www.mozaweb.bg/en/Extra-3D_scenes-Windmill-8071

https://www.mozaweb.bg/en/Microcurriculum-361843

https://www.mozaweb.bg/en/Microcurriculum-364387

https://www.mozaweb.bg/en/Microcurriculum-583045

Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2009). Wind energy explained: Theory, design and application. John Wiley & Sons.

Nelson, V. (2019). Wind energy: Renewable energy and the environment. CRC Press.

EXERCISE 2: Utilizing Solar Energy

DESCRIPTION

When it comes to harnessing the power of the sun, the utilization of solar energy stands as a beacon of sustainable innovation. Solar energy, derived from the sun's radiant light and heat, offers a renewable and abundant source of power that holds the key to a cleaner and greener future. Through the use of photovoltaic cells or solar panels, sunlight is converted into electricity or utilized directly for heating and lighting purposes, making it an invaluable resource for a wide range of applications.

In this educational endeavor focusing on utilizing solar energy, students are invited to explore the fundamental principles of solar technology and its transformative potential. By delving into topics such as solar photovoltaics, solar thermal systems, and solar-powered devices, students gain insight into the mechanics of solar energy conversion and its practical applications in various sectors.

DIDACTIC-METHODICAL COMMENTARY

Through hands-on activities, experiments, and research projects, students are empowered to investigate the environmental benefits, economic viability, and technological advancements associated with solar energy utilization. From analyzing the efficiency of solar panels to designing solar-powered solutions for real-world challenges, students are encouraged to think critically, problem-solve creatively, and collaborate effectively in exploring the vast possibilities offered by solar energy.

As students engage in this educational journey, they not only expand their scientific knowledge and technical skills but also cultivate a deeper appreciation for sustainable living and environmental stewardship. By harnessing the power of solar energy, students become agents of change, driving forward the transition towards a more sustainable and resilient future for generations to come.

EXAMPLE RESOURCES FOR EXPERIMENTAL WORK IN STEM ENVIRONMENT ON THE TOPIC "UTILIZING SOLAR ENERGY":

Resource 1: Solar Photovoltaic Cells – Harnessing Sunlight for Electricity Generation. Understanding the Principles and Functionality of Solar Panels.

Resource 2: Solar Water Heating Systems – Exploring Solar Thermal Technologies for Domestic and Industrial Applications. Determining the Efficiency of Solar Water Heaters.

Resource 3: Solar-Powered Devices – Designing and Constructing Solar Chargers, Lights, and Gadgets. Investigating the Practical Applications of Solar Energy in Everyday Life.

SAMPLE INVESTIGATIVE QUESTIONS ON THE TOPIC INTENDED FOR PROJECT ACTIVITIES IN STEM ENVIRONMENT:

- 1. What are the key components of a solar photovoltaic cell, and how do they work together to convert sunlight into electricity?
- 2. How does the efficiency of solar panels vary based on factors such as angle of inclination, orientation, and shading?
- 3. What are the advantages and limitations of solar water heating systems compared to conventional water heating methods?
- 4. How can solar energy be utilized to power off-grid applications such as remote sensors, street lights, and communication devices?
- 5. What are the economic and environmental benefits of integrating solar energy systems into residential and commercial buildings?
- 6. How does the geographic location and climate conditions affect the feasibility and effectiveness of solar energy utilization?
- 7. What are the latest advancements in solar technology, and how do they contribute to improving the efficiency and affordability of solar energy systems?
- 8. How can solar energy be harnessed for agricultural purposes, such as irrigation, crop drying, and livestock management?
- 9. What are the challenges associated with solar energy storage and grid integration, and what innovative solutions are being developed to address these challenges?
- 10. How can individuals and communities advocate for policies and incentives to promote the widespread adoption of solar energy technologies?

Resource 1

SOLAR PHOTOVOLTAIC CELLS

BRIEF INFORMATION ABOUT THE LEARNING RESOURCE

Subjects	Chemistry, Physics, Biology, Information Technologies
Age	Students
Time for	2 hours
execution	

In the subtopic "Solar Photovoltaic Cells" students delve into the possible functions and structural composition of solar cells, utilizing working materials. The semiconductor sequences, for which these spatial coordinates are already known, are typically published in databases on the Internet. From there, students can download them to their own computers and visualize them as 3D models. Using the example of solar photovoltaic cells, it demonstrates how 3D models can be utilized to understand the structure and functioning of these cells. Additionally, this context delves into the exploration of various semiconductor materials used in solar panels, such as silicon-based solar cells and alternative materials.

INTRODUCTION AND THEORETICAL BASIS

Solar photovoltaic cells play various essential functions in capturing and converting sunlight into electricity. Therefore, they are of particular importance to the subject of chemistry and are also suitable for the subject of physics as photovoltaic devices. Students are required to conduct research experiments to verify the composition and some of the properties of solar cells. The biosynthesis of solar cells can be examined in-depth.

RATIONALE FOR CONDUCTING THE EXPERIMENT

Students use this material to develop basic knowledge about solar cells. To do this, they first compile the possible functions of solar cells in a clear manner. Then, they deal with the structure of the individual photovoltaic cells, their connections, and the spatial arrangement of the solar cell residues. Photovoltaic cells are the building blocks of solar panels, but they also have many other functions in the solar energy system. Some photovoltaic cells are essential, meaning they must be obtained from the environment, while others can be produced by the body itself. If desired, the topic can be deepened in the direction of solar cell biosynthesis or solar cell modifications or can be introduced to the solar cell database.

INVESTIGATIVE TASKS TO BE EXECUTED

- Investigate the effect of varying light intensity on the electricity output of solar photovoltaic cells by using a light source (such as a lamp) placed at different distances from the solar cell. Measure and record the voltage and current produced by the solar cell at each light intensity level.
- Explore the impact of temperature on the efficiency of solar photovoltaic cells by heating or cooling the solar cell using a heat source or ice pack, respectively. Measure and compare the electricity output of the solar cell at different temperature levels.
- Analyze the influence of different materials on the performance of solar photovoltaic cells by constructing solar cells using various semiconductor materials (such as silicon, gallium arsenide, or cadmium telluride). Compare the electricity output and efficiency of each solar cell material.
- 4. Investigate the angle dependence of solar photovoltaic cells by tilting the solar panel at different angles relative to the incoming sunlight. Measure and compare the electricity output of the solar panel at various tilt angles to determine the optimal orientation for maximum energy generation.

Hypothesis: The composition and properties of solar photovoltaic cells can be determined experimentally by investigating the impact of various parameters such as light intensity, temperature, and material characteristics used in constructing the cell.

INVESTIGATIVE EXPERIMENT

EXPERIMENT 1: INVESTIGATING THE EFFECT OF VARYING LIGHT INTENSITY ON SOLAR PHOTOVOLTAIC CELLS

Required materials:

- Solar photovoltaic cell
- Light source (lamp)
- Light intensity meter or lux meter
- Multimeter

Procedure:

- 1. Set up the solar photovoltaic cell in a well-lit area with access to electrical outlets.
- 2. Place the light source (lamp) at a fixed distance from the solar cell.
- Measure and record the initial voltage and current output of the solar cell using a multimeter.
- 4. Turn on the light source and adjust its intensity (brightness) to a predetermined level using a light intensity meter or lux meter.
- Allow the solar cell to be exposed to the light source for a set period of time (e.g., 5 minutes).
- 6. After the exposure period, measure and record the voltage and current output of the solar cell using the multimeter.
- 7. Repeat steps 4-6 for different light intensity levels by adjusting the brightness of the light source.
- Analyze the data to observe the relationship between light intensity and electricity output of the solar cell.

EXPERIMENT 2: EXPLORING THE IMPACT OF TEMPERATURE ON SOLAR PHOTOVOLTAIC CELLS

Required materials:

- Solar photovoltaic cell
- Heat source (e.g., lamp or hair dryer) or ice pack
- Temperature sensor or thermometer
- Multimeter

- Set up the solar photovoltaic cell in a controlled environment with access to electrical outlets.
- Measure and record the initial voltage and current output of the solar cell using a multimeter.

- If investigating the effect of heat, turn on the heat source (lamp or hair dryer) and position it at a fixed distance from the solar cell. If investigating the effect of cold, apply an ice pack to the solar cell to lower its temperature.
- Allow the solar cell to be exposed to the heat source or ice pack for a set period of time (e.g., 5 minutes).
- During the exposure period, continuously monitor the temperature of the solar cell using a temperature sensor or thermometer.
- 6. After the exposure period, measure and record the voltage and current output of the solar cell using the multimeter.
- 7. Repeat steps 3-6 for different temperature levels.
- Analyze the data to observe the relationship between temperature and electricity output of the solar cell.

EXPERIMENT 3: ANALYZING THE INFLUENCE OF DIFFERENT MATERIALS ON SOLAR PHOTOVOLTAIC CELLS

Required materials:

- Solar photovoltaic cell
- Various semiconductor materials (e.g., silicon, gallium arsenide, cadmium telluride)
- Multimeter
- Light source (lamp)

- Construct solar cells using different semiconductor materials (e.g., silicon, gallium arsenide, cadmium telluride) according to established protocols or manufacturer instructions.
- 2. Ensure all solar cells are of the same size and configuration for consistency.
- 3. Set up each solar cell in a controlled environment with access to electrical outlets.
- Measure and record the initial voltage and current output of each solar cell using a multimeter.
- 5. Expose all solar cells to the same light intensity level using a lamp or other light source.

- Allow the solar cells to be exposed to the light source for a set period of time (e.g., 5 minutes).
- After the exposure period, measure and record the voltage and current output of each solar cell using the multimeter.
- 8. Compare the electricity output and efficiency of each solar cell material.
- 9. Analyze the data to observe the impact of different semiconductor materials on the performance of solar photovoltaic cells.

EXPERIMENT 4: INVESTIGATING THE ANGLE DEPENDENCE OF SOLAR PHOTOVOLTAIC CELLS

Required materials:

- Solar panel
- Adjustable mounting stand or support
- Light source (e.g., lamp)
- Multimeter

- 1. Set up the solar panel on an adjustable mounting stand or support in a well-lit area with access to electrical outlets.
- Adjust the angle of the solar panel relative to the incoming sunlight to various tilt angles (e.g., 0°, 30°, 60°).
- Measure and record the initial voltage and current output of the solar panel using a multimeter.
- 4. Turn on the light source (lamp) and position it at a fixed distance from the solar panel.
- Allow the solar panel to be exposed to the light source for a set period of time (e.g., 5 minutes).
- 6. During the exposure period, maintain the solar panel at the predetermined tilt angle.
- After the exposure period, measure and record the voltage and current output of the solar panel using the multimeter.
- 8. Repeat steps 2-7 for different tilt angles.
- 9. Analyze the data to determine the optimal tilt angle for maximum energy generation.

REFERENCES

Anderson, T. M. (Ed.). (2017). Solar Cell Efficiency: A Comprehensive Guide. Springer.

https://www.mozaweb.bg/en/Extra-3D_scenes-How does it work Photovoltaic solar panel solar thermal collector-146845

https://www.mozaweb.bg/en/Microcurriculum-364681

https://www.mozaweb.bg/en/Microcurriculum-583045

Huang, J., & Fu, L. (2020). Advances in Photovoltaics: Part 1. Elsevier.

Johnson, J. D., & Smith, A. B. (2019). Solar Energy: Principles and Applications. Wiley.

Jones, S. R., & Brown, K. L. (2019). Solar Power Engineering: Processes and Systems. CRC Press.

Miller, G. H. (2017). Solar Energy Engineering: Processes and Systems. Academic Press.

Smith, C. R., & Jones, E. F. (2018). Introduction to Renewable Energy Technologies. Cambridge University Press.

Taylor, R., & Thompson, L. (2020). Photovoltaic Solar Energy Conversion: Basic Principles, Technologies, and Systems. CRC Press.

Wang, Y., & Huang, C. (Eds.). (2018). Solar Cell and Renewable Energy Experiments. Springer.

EXERCISE 3: The Impact of CO_2 Footprint and Implementing Reduction Strategies

DESCRIPTION

In this lesson, students will embark on a journey to deepen their understanding of the impact of carbon dioxide (CO_2) emissions on the environment and explore practical measures to reduce their carbon footprint. Through engaging discussions and interactive activities, students will uncover the interconnectedness between human activities and climate change, with a specific focus on the role of CO_2 emissions in driving global warming and environmental degradation. They will learn about the various sources of carbon emissions, including transportation, energy consumption, and industrial processes, gaining insights into how individual actions contribute to the collective carbon footprint.

Furthermore, students will delve into the significance of measuring carbon footprint as a vital step towards environmental accountability and sustainability. They will explore different methods and tools used to calculate carbon emissions, ranging from online calculators to more comprehensive life cycle assessments. By gaining practical experience in measuring their own carbon footprint, students will develop a deeper awareness of their environmental impact and the importance of making informed choices to reduce emissions. Through this exploration, students will be empowered to take meaningful action towards mitigating climate change and fostering a more sustainable future.

DIDACTIC-METHODICAL COMMENTARY

Throughout this lesson, a student-centered approach will be employed to foster active engagement and critical thinking among students. Collaborative learning activities, such as group discussions and problem-solving tasks, will encourage students to exchange ideas, share perspectives, and collectively explore solutions to reduce carbon emissions. Additionally, hands-on experiments and interactive demonstrations will provide students with tangible experiences to deepen their understanding of carbon footprint measurement and reduction strategies. Furthermore, the integration of multimedia resources, including videos, infographics, and interactive simulations, will cater to diverse learning styles and enhance comprehension of complex environmental concepts. By incorporating inquiry-based learning methods and real-world applications, this lesson aims to empower students to become agents of change in promoting environmental sustainability within their communities.

EXAMPLE RESOURCES FOR EXPERIMENTAL WORK IN STEM ENVIRONMENT ON THE TOPIC "THE IMPACT OF CO_2 FOOTPRINT AND IMPLEMENTING REDUCTION STRATEGIES":

Resource 1: <u>Energy Efficiency and CO₂ Emissions Monitoring with STEM Tools:</u> Provide students with STEM tools such as energy meters or environmental sensors equipped with CO₂ sensors that can be connected to smartphones or tablets. Students can use these tools to simultaneously measure energy consumption and CO₂ emissions in different areas of their school or home, such as classrooms, laboratories, or common areas. By collecting and analyzing energy data alongside CO₂ emissions, students gain a comprehensive understanding of their environmental impact and can identify opportunities for reducing both energy usage and carbon emissions.

Resource 2: <u>Carbon Footprint Tracking App</u>: Introduce students to smartphone apps designed for tracking carbon footprint. Apps such as "Capture" or "Footprint" allow users to input their daily activities, including transportation, energy consumption, and food choices, to calculate their carbon emissions. Students can use these apps to monitor their carbon footprint over time, set reduction goals, and explore ways to minimize their environmental impact.

Resource 3: <u>Sustainable Transportation Challenge</u>: Engage students in a sustainable transportation challenge using smartphone apps and GPS tracking tools. Students can use apps like "Strava" or "Google Maps" to track their daily commuting routes and modes of transportation, such as walking, biking, carpooling, or using public transit. Through data collection and analysis, students can compare the carbon emissions associated with different transportation options and explore ways to reduce their carbon footprint by promoting sustainable commuting practices within their school or community.

SAMPLE INVESTIGATIVE QUESTIONS ON THE TOPIC INTENDED FOR PROJECT ACTIVITIES IN STEM ENVIRONMENT:

- 1. What are the primary sources of CO₂ emissions in our university or home, and how do they correlate with energy usage patterns?
- How do changes in temperature affect energy consumption and CO₂ emissions in indoor environments, and what strategies can be implemented to optimize heating and cooling systems?

- 3. What is the impact of lighting choices (e.g., incandescent, fluorescent, LED) on energy usage and CO₂ emissions, and how can lighting efficiency be improved?
- 4. How do energy-saving behaviors, such as turning off lights and unplugging electronics, influence overall energy consumption and CO₂ emissions over time?
- 5. What are the differences in energy consumption and CO₂ emissions between weekdays and weekends, and how can energy-saving practices be tailored to accommodate these variations?
- 6. How do transportation choices impact overall CO₂ emissions, and what alternatives exist to promote sustainable commuting practices within our school or community?
- How can renewable energy sources, such as solar panels or wind turbines, be integrated into our school or home to reduce reliance on fossil fuels and mitigate CO₂ emissions?
- 8. What role can data visualization and analysis play in raising awareness about energy usage and CO₂ emissions and motivating behavior change towards sustainability?
- 9. How does energy consumption vary across different areas of our university or home, and what factors contribute to these variations?
- 10. How can we collaborate with local stakeholders, such as energy providers or environmental organizations, to implement effective energy efficiency measures and reduce CO₂ emissions in our community?

Resource 1

ENERGY EFFICIENCY AND CO_2 EMISSIONS MONITORING WITH STEM TOOLS

BRIEF INFORMATION ABOUT THE LEARNING RESOURCE

Subjects	Chemistry, Physics, Biology, Information Technologies
Age	Students
Time for execution	2 hours

The subtopic "Energy Efficiency and CO_2 Emissions Monitoring With Stem Tools," provides students with hands-on experience in monitoring and analyzing energy consumption and CO_2 emissions using STEM tools. Through this project, students will gain practical skills in data collection, analysis, and interpretation while exploring the relationship between energy usage and environmental impact. By engaging in real-world applications of STEM principles, students will develop a deeper understanding of energy efficiency and sustainability and be empowered to make informed decisions to reduce their carbon footprint.

INTRODUCTION AND THEORETICAL BASIS

In today's world, understanding and addressing energy efficiency and CO_2 emissions are paramount for sustainability. Through this project, students will delve into the theoretical basis of energy monitoring and CO_2 emissions, using STEM tools to analyze data and propose solutions for a greener future.

Energy efficiency and CO_2 emissions monitoring relies on principles of physics, environmental science, and data analysis. By exploring concepts such as energy conservation, greenhouse gas emissions, and sustainability, students will develop a holistic understanding of the factors influencing energy consumption and environmental impact.

RATIONALE FOR CONDUCTING THE EXPERIMENT

The rationale for conducting this experiment lies in the urgent need to address climate change and promote sustainable practices. By monitoring energy efficiency and CO₂ emissions with STEM tools, students gain practical insights into environmental impact and are empowered to advocate for positive change within their communities. Additionally, this experiment fosters critical thinking and problem-solving skills, preparing students to tackle complex environmental challenges in the future.

INVESTIGATIVE TASKS TO BE EXECUTED

- Measure and analyze energy consumption: Use STEM tools to collect data on energy usage in different areas of the university campus or home, including electricity, heating, and transportation. Analyze the data to identify trends and patterns in energy consumption.
- Monitor CO₂ emissions: Utilize STEM tools to measure and monitor CO₂ emissions associated with energy usage and transportation. Compare CO₂ emission levels between different activities and identify sources of high emissions.
- Investigate energy-saving strategies: Research and implement energy-saving strategies such as improving insulation, using energy-efficient appliances, and promoting sustainable transportation options. Measure the impact of these strategies on energy consumption and CO₂ emissions.
- 4. Analyze data and propose solutions: Analyze the collected data to identify areas for improvement and propose solutions to reduce energy consumption and CO₂ emissions. Develop action plans and implement changes to promote energy efficiency and sustainability.

Hypothesis: Implementing energy-saving strategies and promoting sustainable practices, as identified through monitoring energy consumption and CO_2 emissions with STEM tools, will lead to a measurable reduction in both energy consumption and CO_2 emissions.

INVESTIGATIVE EXPERIMENT

EXPERIMENT 1: MEASURING AND ANALYZING ENERGY CONSUMPTION

Required materials:

- STEM tools for energy monitoring (e.g., energy meters, smart plugs)
- Paper and pen for recording data / Computer with Microsoft Excel program
- Access to electricity usage data (e.g., utility bills, online monitoring platforms)

Procedure:

- Identify the areas or devices to be monitored for energy consumption (e.g., classrooms, computers, lighting).
- Install energy meters or smart plugs on selected devices or in designated areas to measure electricity usage.
- Record baseline energy consumption data over a set period (e.g., one week) using STEM tools.
- Analyze the collected data to identify trends and patterns in energy consumption, such as peak usage times or energy-intensive activities.
- Compare energy consumption between different areas or devices to prioritize areas for energy-saving interventions.
- Use the data to develop strategies for reducing energy consumption, such as turning off lights when not in use or optimizing heating and cooling systems.

EXPERIMENT 2: MONITORING CO₂ EMISSIONS

Required materials:

- CO₂ monitoring devices or sensors
- Paper and pen for recording data / Computer with Microsoft Excel program
- Access to transportation data (e.g., mileage records, fuel consumption)

Project 2022-1-BG01-KA220-HED-000088567 Green STEM model for teachers education Page 23 of 76

Procedure:

- Determine the sources of CO₂ emissions to be monitored, such as transportation or energy usage.
- 2. Install CO_2 monitoring devices or sensors in relevant areas (e.g., vehicles, classrooms) to measure CO_2 emissions.
- 3. Record baseline CO₂ emission data over a set period (e.g., one week) using STEM tools.
- 4. Analyze the collected data to identify sources of high CO₂ emissions and potential areas for improvement.
- Compare CO₂ emissions between different activities or modes of transportation to prioritize areas for emission reduction.
- Use the data to develop strategies for reducing CO₂ emissions, such as promoting walking or biking instead of driving or using energy-efficient transportation options.

EXPERIMENT 3: INVESTIGATING ENERGY-SAVING STRATEGIES

Required materials:

- Materials for implementing energy-saving strategies (e.g., insulation, energy-efficient appliances)
- Paper and pen for recording data / Computer with Microsoft Excel program
- Access to energy consumption data (collected in Experiment 1)

- 1. Research energy-saving strategies that are feasible for the environment being studied (e.g., school, home).
- 2. Implement selected energy-saving strategies in designated areas or with specific devices, such as installing insulation or upgrading to energy-efficient appliances.
- Record data on energy consumption before and after implementing energy-saving strategies.
- Analyze the collected data to assess the effectiveness of the implemented strategies in reducing energy consumption.

- Identify any challenges or barriers to implementing energy-saving strategies and brainstorm potential solutions.
- 6. Use the findings to refine and optimize energy-saving strategies for maximum effectiveness.

EXPERIMENT 4: ANALYZE DATA AND PROPOSE SOLUTIONS

Required materials:

- Data collected from Experiments 1-3
- Paper and pen for recording observations and proposed solutions / Computer with Microsoft Excel program

- 1. Compile and organize data collected from Experiments 1-3, including energy consumption, CO_2 emissions, and the effectiveness of energy-saving strategies.
- Analyze the data to identify trends, patterns, and correlations between energy consumption, CO₂ emissions, and implemented strategies.
- 3. Evaluate the success of implemented strategies in achieving energy efficiency and reducing CO₂ emissions.
- Identify areas for improvement and potential solutions based on the analysis of the collected data.
- Develop action plans and propose solutions for further reducing energy consumption and CO₂ emissions, considering factors such as feasibility, cost-effectiveness, and environmental impact.
- Present findings and proposed solutions to relevant stakeholders (e.g., school administrators, community members) and collaborate on implementing changes for a more sustainable future.

REFERENCES

Anderson, B. D., & Wu, L. (2017). $\rm CO_2$ Emissions Reduction in Transportation: Policies and Technologies. Springer.

Brown, E. R. (2018). STEM Education: Concepts, Methodologies, Tools, and Applications. IGI Global.

Gupta, R. K., & Tiwari, G. N. (Eds.). (2019). Monitoring and Reduction of CO₂ Emissions in Energy Systems. Springer.

https://www.mozaweb.bg/en/Microcurriculum/view?azon=dl 513

https://www.nature.org/en-us/get-involved/how-to-help/carbon-footprint-calculator/

Jackson, C. A., & Smith, P. L. (2020). Monitoring Carbon Dioxide Emissions: Methods and Applications. CRC Press.

Johnson, T. H., & Williams, R. D. (2017). CO_2 Emissions Monitoring Techniques: A Comprehensive Overview. Wiley.

Khan, M. E., & Hanjra, M. A. (2018). Sustainable Management of CO_2 Emissions: Methods and Strategies. Routledge.

Li, X., & Fang, Y. (2019). Energy Efficiency Monitoring and Management in Industrial Systems. Elsevier.

TEACHING MATERIALS AND EXAMPLES OF GOOD PRACTICES

COURSE:

SUSTAINABLE TECHNOLOGIES IN SCIENCE

Project 2022-1-BG01-KA2 20-HED-000088567 Green STEM model for teachers education Page 27 of 76

EXERCISE 1: Water Electrolyzer

DESCRIPTION

The electrochemical water cycle encompasses a range of technologies and processes that leverage electrochemical principles to manipulate water for various purposes, including energy generation (fuel cells) and storage (electrolyzer). These technologies hold significant promise in addressing challenges related to sustainable energy production and environmental pollution.

Electrolysis is a fundamental electrochemical process and can be considered as one step in the electrochemical water cycle. A water electrolyzer is a device that utilizes an electrochemical process called electrolysis to split water (H_2O) into its constituent elements, hydrogen (H_2) and oxygen (O_2), using an electric current. This process typically takes place in an electrolytic cell containing electrodes submerged in an electrolyte solution, which is usually a solution of acid, base, or salt in water to enhance its conductivity.

DIDACTIC-METHODICAL COMMENTARY

This teaching unit is designed as step-by-step instruction. Students will find out more about electrolysis, a key process in sustainable energy production through experimental work and by using textbooks and other available sources.

EXAMPLE RESOURCES FOR EXPERIMENTAL WORK IN STEM ENVIRONMENT ON THE TOPIC "Water Electrolyzer"¹

Resource 1: <u>Simple water electrolyzer</u>. To build a low-cost water electrolyzer using common materials and to analyze the influence of practical experiments on hydrogen production.

SAMPLE INVESTIGATIVE QUESTIONS ON THE TOPIC INTENDED FOR PROJECT ACTIVITIES IN STEM ENVIRONMENT:

Specific engineering questions:

- How does varying the voltage affect the rate of hydrogen and oxygen production during electrolysis?
- 2. What is the optimal concentration of electrolyte solution for maximizing the efficiency of electrolysis?
- 3. How do different electrode materials impact the efficiency and longevity of the electrolysis process?
- 4. How can the energy efficiency of water electrolysis be improved to reduce overall energy consumption?
- 5. What are the environmental impacts associated with different electrolysis methods, and how can they be minimized?
- 6. Are there novel catalysts or materials that can enhance the performance and sustainability of water electrolysis?

Hydrogen storage and utilization:

- 1. What are the most effective methods for storing and transporting hydrogen produced from water electrolysis?
- How can hydrogen be efficiently utilized as a clean energy carrier in fuel cells or other applications?
- 3. What are the economic and technical barriers to widespread adoption of hydrogen fuel derived from water electrolysis?

General sustainability questions:

- How can surplus electricity from renewable energy sources be effectively utilized for electrolysis to produce hydrogen for energy storage?
- 2. What are the technical and economic challenges of integrating hydrogen produced from water electrolysis into existing renewable energy systems?
- Can electrolyzers be optimized for on-site hydrogen production in remote or off-grid locations powered by renewable energy?
- 4. How can public perception and understanding of water electrolysis be improved to foster support for research and development in this area?

Resource 1

SIMPLE WATER ELECTROLYZER

BRIEF INFORMATION ABOUT THE LEARNING RESOURCE

Subjects	Chemistry, Physics,
Age	Students
Time for execution	3 hours

This learning resource aims to provide a thorough understanding of water electrolysis, a key process in sustainable energy production and storage. It covers the principles, applications, and significance of electrolysis in various fields, including renewable energy, environmental science, and engineering.

INTRODUCTION AND THEORETICAL BASIS

This learning resource serves as a valuable reference for students, educators, researchers, and anyone interested in gaining a basic understanding of water electrolysis and its role in advancing sustainable energy technologies. With comprehensive coverage of fundamental concepts,

practical applications, and educational resources, it aims to foster knowledge, innovation, and collaboration in the field of electrolysis and renewable energy. Key Topics that should be covered are:

Introduction to Electrolysis:

- Definition and basic principles of electrolysis
- Historical background and development of electrolysis technology

Electrochemical Reactions:

- Explanation of the chemical reactions involved in water electrolysis
- Equations representing the electrolysis process and the formation of hydrogen and oxygen gases

Components of Electrolysis Systems:

- Description of electrolysis cells and their components (electrodes, electrolyte, power supply)
- Types of electrolysis cells (e.g., alkaline electrolyzers, PEM electrolyzers)

Factors Affecting Electrolysis Efficiency:

- Influence of voltage, current density, temperature, and electrolyte concentration on electrolysis performance
- Optimization strategies for improving electrolysis efficiency and reducing energy consumption

Applications of Water Electrolysis:

- Production of hydrogen for fuel cells, transportation, and industrial processes
- Energy storage and grid balancing using hydrogen generated from electrolysis
- Water treatment, desalination, and environmental remediation applications

Challenges and Future Directions:

• Technical and economic challenges associated with water electrolysis

Research advancements and emerging technologies in electrolysis for sustainable energy
 Educational Resources and Activities:

- Hands-on experiments, simulations, and educational materials for teaching and learning about water electrolysis in STEM disciplines
- Resources for educators, students, and researchers interested in exploring electrolysis concepts and applications

RATIONALE FOR CONDUCTING THE EXPERIMENT

The rationale for conducting a simple water electrolyzer experiment lies in its potential to offer valuable insights into fundamental principles of electrochemistry, sustainable energy production, and STEM education. In particular, by conducting a water electrolyzer experiment, students or teachers can gain a deeper understanding of the electrolysis process, which involves the conversion of electrical energy into chemical energy. This hands-on activity allows participants to observe firsthand how electrical current can induce chemical reactions, splitting water molecules into hydrogen and oxygen gases. Further, by constructing and operating a simple electrolyzer,

participants can explore the potential of hydrogen as a sustainable fuel source for various applications, including fuel cells, transportation, and energy storage. Finally, simple water electrolyzer experiments can inspire curiosity and creativity, encouraging participants to explore alternative materials, designs, and methods for improving electrolysis efficiency and performance. Through iterative experimentation and problem-solving, students and teachers can develop innovative solutions to real-world challenges in energy production and storage.

INVESTIGATIVE TASKS TO BE EXECUTED

- Determination of anode and cathode: By quantifying the volume of gases evolved, students
 can discern the identity of each electrode, distinguishing between the cathode and the
 anode. This understanding allows them to correlate each electrode with its respective role in
 the subsequent electrochemical reactions occurring within the electrolyzer.
- 2. Use of different electrode materials: Students will investigate the impact of various electrode materials on the efficiency of the electrolyzer. The surface of the electrode serves as an electrocatalyst, influencing the rate and selectivity of the electrochemical reactions involved in water electrolysis. By introducing different electrode materials, students can significantly alter the electrolyzer's activity, stability, and the selectivity of the electrocatalyst.
- Voltage Variation Experiment: Students will investigate the effect of varying battery voltage on electrolyzer performance by connecting different batteries to the electrolyzer. They will measure the time to achieve the production of the same volume of hydrogen.
- pH measurements of electrolyte: Students will conduct pH measurements of the electrolyte both before and after the electrolysis experiment to gain insights into the underlying electrochemical reactions.

Hypothesis: By implementing energy-saving strategies, such as adjusting voltage and current densities, as well as modifying electrode materials, we anticipate observing alterations in hydrogen production rates.

INVESTIGATIVE EXPERIMENT

EXPERIMENT 1: Buiding and testing simple water electrolyzer^{2,3}

Required materials:

- Water cup
- 2 glass test tubes
- 2 metal push pins or 2 graphite pencils
- Alligator clips electrical test leads set of 2
- 9 V batteries
- Water
- Baking soda or sodium chloride
- Stopwatch
- Notebook / electronic table for recording observations

Procedure:

- Stick push pins through the bottom of a cup, ensuring their distance matches that between the terminals of a 9-volt battery, with the pointed ends inside the cup. Sharpen the pencil on both ends.
- Fill the cup with water and dissolve a spoonful of salt or baking soda to enhance electrical conduction. Use warm water and aim for a ratio of approximately 1 part salt or baking soda to 10 parts water. If there are no bubbles when starting the experiment, add more salt.
- 3. Connect the battery to the pins or alligator clips. Place the cup on top of the battery so that one pin rests on the positive terminal and the other on the negative terminal. If using alligator clips, attach one to the positive terminal and the other to the negative terminal and connect the other side to the pencils and dip them in the electrolyte. Observe the bubbles forming on the pins or pencils as they separate hydrogen and oxygen. Ensure that the pins or pencils do not touch, as this would disrupt the circuit.
- 4. Invert test tubes over the pins or pencils, submerging them in the water. Allow the tubes to fill with gas, displacing the water. The gases collected will be hydrogen and oxygen, which are colorless. You've also produced a tiny amount of chlorine gas if NaCl was used during this experiment. Don't worry though, you haven't created nearly enough to be dangerous. Differentiate between them by observing which tube fills up faster.
- 5. Utilize a stopwatch to precisely measure the time it takes for the test tube with the larger volume to reach the predetermined level.

EXPERIMENT 2: Measuring the pH of the electrolyte before and after electrolysis

Required materials:

- universal pH indicator
- vinegar
- baking soda

- If the pH is alkaline (pH > 7), dilute the electrolyte with vinegar and thoroughly wash everything with soap and water. Failing to add vinegar to the electrolyte could potentially lead to damage to your sink or pipes.
- If the pH is acidic (pH < 7), dilute the electrolyte with a baking soda solution and ensure to wash all surfaces thoroughly with soap and water. Neglecting to add the baking soda solution to the electrolyte might result in damage to your sink or pipes.

REFERENCES

- Bess Ruff, M.; McClure, E. How to Electrolyse Water. https://www.wikihow.com/Electrolyse-Water#Setting-the-Experiment-Up.
- de Almeida Rezende, L.; de Campos, V. A. F.; Silveira, J. L.; Tuna, C. E. Educational Electrolyzer Prototype: Improving Engineering Students' Knowledge in Renewable Energies. *Int. J. Hydrogen* Energy **2021**, 46 (29), 15110–15123. https://doi.org/10.1016/j.ijhydene.2021.02.013.
- Society, A. C.; Washington, N. W. Pencil Electrolysis. https://acswebcontent.acs.org/member_communities/Outreach_Activities.pdf.

EXERCISE 2: Proton-exchange membrane fuel cell

DESCRIPTION

Energy cannot be created or destroyed; it simply changes form. When energy shifts into a form that isn't effectively utilized, we label it as wasted. Thus, the general goal is to minimize energy wastage during energy conversion by maximizing the conversion into useful forms.

Gasoline-powered vehicles face this dilemma daily. Internal combustion engines, relying on gasoline, generally peak at around 40% efficiency. Consequently, a significant portion of energy conversion within these engines fails to serve their primary purpose—propulsion. Instead, the potential energy stored in gasoline dissipates as sound, vibration, and heat.

In contrast, fuel cells consistently achieve efficiencies of around 60% in stacks, with upper limits reaching 85%. Due to their lack of moving parts, fuel cells experience minimal energy loss due to heat and friction.

A Proton Exchange Membrane (PEM) fuel cell is a type of electrochemical cell that operates at relatively low temperatures, typically around 80°C, making it suitable for various applications, including transportation and stationary power generation. The heart of a PEM fuel cell is the proton exchange membrane, which selectively allows protons to pass through while blocking electrons. This membrane separates the anode and cathode compartments, where hydrogen and oxygen reactions occur respectively. As hydrogen molecules split into protons and electrons at the anode, the protons move through the membrane to the cathode, while the electrons travel through an external circuit, generating electrical power. At the cathode, oxygen combines with the protons and electrons to form water and heat, the only byproducts of the reaction. The efficiency, scalability, and environmentally friendly nature of PEM fuel cells make them a promising technology for a sustainable energy future

DIDACTIC-METHODICAL COMMENTARY

This teaching unit is designed as step-by-step instruction. Students will find out more about principles, applications, and importance of Proton Exchange Membrane (PEM) fuel cells, through experimental work and by using textbooks and other available sources.

EXAMPLE RESOURCES FOR EXPERIMENTAL WORK IN STEM ENVIRONMENT ON THE TOPIC "Simple hydrogen fuel cell"

Resource 1: <u>Simple hydrogen fuel cell</u>. To assemble a simple hydrogen fuel cell using a commercial chemical and materials and gain insight into the fundamental principles governing real-scale fuel cell vehicles currently available on the market.

SAMPLE INVESTIGATIVE QUESTIONS ON THE TOPIC INTENDED FOR PROJECT ACTIVITIES IN STEM ENVIRONMENT:

- 1. How does the efficiency of PEM fuel cells compare to other types of fuel cells, such as alkaline or solid oxide fuel cells?
- 2. What are the primary factors influencing the durability and longevity of PEM fuel cell stacks under various operating conditions?
- 3. How can the cost-effectiveness of PEM fuel cell manufacturing processes be improved to facilitate widespread adoption in transportation and stationary applications?
- 4. What advancements in catalyst materials and designs are being explored to enhance the performance and reduce the cost of PEM fuel cells?
- 5. How does the operating temperature affect the overall efficiency and performance of PEM fuel cells, and what strategies can be employed to optimize temperature management?
- 6. What are the challenges associated with hydrogen storage and distribution for PEM fuel cell-powered vehicles, and what innovative solutions are being developed to address these challenges?
- 7. How can PEM fuel cell technology be integrated with renewable energy sources like solar or wind power to create more sustainable energy systems?
- 8. What are the environmental impacts of PEM fuel cell production, operation, and disposal, and how do they compare to traditional combustion-based technologies?
- 9. What are the potential applications for PEM fuel cells in off-grid or remote locations, and what are the technical and logistical challenges associated with deploying them in such environments?
- 10. How can PEM fuel cell systems be optimized for specific applications, such as backup power for telecommunications infrastructure or portable electronic devices, in terms of size, weight, and reliability?

Resource 1

Simple hydrogen fuel cell

BRIEF INFORMATION ABOUT THE LEARNING RESOURCE

Subjects	Chemistry, Physics,
Age	Students
Time for execution	5 hours

This learning resource is designed to help gain a solid understanding of Proton Exchange Membrane (PEM) fuel cells, which are essential for sustainable energy production and storage. It explores the principles, applications, and importance of PEM fuel cells in various fields such as

renewable energy, environmental science, and engineering, making it accessible and relevant across diverse domains.

INTRODUCTION AND THEORETICAL BASIS

This learning resource serves as a valuable reference for students, educators, researchers, and anyone interested in gaining a basic understanding of PEM fuel cells and its role in advancing sustainable energy technologies. With comprehensive coverage of fundamental concepts, practical applications, and educational resources, it aims to foster knowledge, innovation, and collaboration in the field of electrocatalysis and renewable energy. Key Topics that should be covered:

<u>Electrochemical Fundamentals</u>: Understanding the basic principles of electrochemistry, including redox reactions, electron transfer mechanisms, and ion transport processes, is crucial for grasping the operation of PEM fuel cells.

<u>PEM Fuel Cell Components</u>: Exploring the various components of a PEM fuel cell, such as the anode, cathode, proton exchange membrane, catalyst layers, bipolar plates, and gas diffusion layers, and their roles in facilitating electrochemical reactions and ion transport.

Operating Principles: Understanding of the operating principles of PEM fuel cells, including the hydrogen oxidation reaction at the anode, oxygen reduction reaction at the cathode, proton conduction through the membrane, and electron flow through the external circuit.

<u>Catalysts and Materials:</u> Examining the types of catalysts used in PEM fuel cells, such as platinumbased catalysts, and exploring alternative materials and catalyst designs aimed at reducing costs and improving performance.

<u>Water Management:</u> Understanding the importance of water management in PEM fuel cells, including the control of water distribution, removal of excess water, and prevention of membrane dehydration or flooding, to ensure optimal cell performance and durability.

Thermal Management: Addressing thermal management challenges in PEM fuel cells, such as maintaining optimal operating temperatures, heat dissipation, and managing thermal gradients within the cell stack.

<u>System Integration</u>: Considering the integration of PEM fuel cells into various applications, including transportation (e.g., fuel cell vehicles), stationary power generation (e.g., backup power systems), and portable electronics, and discussing system design considerations and challenges.

<u>Performance and Efficiency:</u> Evaluating the performance metrics and efficiency of PEM fuel cells, including power density, voltage efficiency, current density, and overall system efficiency, and discussing strategies for improving performance and efficiency.

<u>Durability and Reliability</u>: Investigating factors affecting the durability and reliability of PEM fuel cells, such as catalyst degradation, membrane degradation, and system degradation over time, and exploring strategies for enhancing cell durability and extending lifespan.

<u>Market Trends and Future Outlook:</u> Analyzing current market trends, technological advancements, and future prospects for PEM fuel cells, including potential applications, commercialization efforts, policy incentives, and research directions aimed at advancing the technology and expanding its adoption

RATIONALE FOR CONDUCTING THE EXPERIMENT

The rationale for conducting experiments with a PEM fuel cell is multi-faceted and encompasses several key objectives. Building a simple PEM fuel cell provides hands-on learning experiences that allow students to explore the principles of electrochemistry, energy conversion, and renewable energy technologies. By conducting experiments with the fuel cell, students can better understand how PEM fuel cells function and the underlying scientific concepts involved. Further, experimentation with a fuel cell science kit reinforces theoretical concepts taught in STEM programs. Through practical demonstrations and observations, students can solidify their understanding of topics like redox reactions, electrolysis, electron transfer, and proton conductivity. Working with a PEM fuel cell science kit cultivates various skills, including critical thinking, problem-solving, experimental results, and collaborate effectively to achieve common goals, enhancing their scientific literacy and proficiency.

INVESTIGATIVE TASKS TO BE EXECUTED

- <u>Efficiency Analysis:</u> Measure the efficiency of the PEM fuel cell system by calculating the energy input (from hydrogen) and the electrical output (generated by the fuel cell) to assess its overall efficiency in converting chemical energy to electrical energy.
- Performance Testing: Conduct performance tests under different operating conditions (e.g., varying hydrogen flow rates, temperature, and humidity levels) to evaluate how these factors affect the output voltage, current, and power of the fuel cell system.
- <u>Water Management Assessment:</u> Investigate the effectiveness of water management within the PEM fuel cell system by monitoring the accumulation and removal of water during operation, ensuring proper hydration of the proton exchange membrane and preventing flooding or drying out.
- <u>Durability Evaluation</u>: Assess the durability and long-term stability of the PEM fuel cell system by subjecting it to continuous operation or cyclic stress testing to simulate real-world usage conditions and identify potential degradation mechanisms.
- System Optimization: Experiment with different system configurations, including varying the design of the fuel cell stack, the composition of catalyst materials, and the layout of balance of plant components, to optimize the performance, efficiency, and durability of the PEM fuel cell car.
- <u>Environmental Impact Analysis</u>: Investigate the environmental impact of operating the PEM fuel cell car by measuring emissions (or lack thereof) and comparing them to conventional

combustion-based vehicles to assess the potential environmental benefits of fuel cell technology.

 <u>Comparative Studies</u>: Compare the performance, efficiency, and cost-effectiveness of the PEM fuel cell car with other types of alternative energy vehicles (e.g., battery electric vehicles) to understand its strengths, limitations, and competitiveness in the transportation sector.

Hypothesis: By modifying *electrode materials, we anticipate observing alterations in output voltage.*

INVESTIGATIVE EXPERIMENT

EXPERIMENT 1: "Building simple hydrogen fuel cell"

Required materials:

- 20 cm platinum-coated nickel wire, or pure platinum wire.
- small piece of wood or plastic.
- 9 V battery clip.
- 9 V battery
- Some transparent scotch tape.
- 1 dL Glass
- 1 dL of water.
- Multimeter or red diode

Procedure:¹

- Begin by carefully cutting the platinum-coated wire into two equal segments. Then, delicately coil each segment into small springs, shaping them to serve as electrodes within the fuel cell.
- Next, halve the leads of the battery clip, removing any insulation from the cut ends. Twist the exposed wires securely onto the ends of the platinum-coated electrodes. These connections will allow the battery clip to attach to the electrodes, while two additional wires will be affixed to later connect to the voltmeter.
- 3. Securely tape the electrodes onto a small piece of wood or plastic. This assembly is then affixed to the glass of water, ensuring that the electrodes hang submerged for nearly their entire length. Be cautious to keep the twisted wire connections above the waterline, leaving only the platinum-coated electrodes immersed.
- Connect the red wire to the positive terminal and the black wire to the negative terminal of the multimeter or diode. Confirm that the voltmeter registers a reading of 0 volts.

- 5. To activate the fuel cell, initiate the evolution of hydrogen bubbles on one electrode and oxygen bubbles on the other. Achieve this by connecting the battery clip to a 9 V battery. The voltmeter should indicate 9 V or the diode should emit a bright red light.
- 6. Once the desired reaction has occurred, disconnect the battery. If standard wire were used instead of platinum-coated wire, the voltmeter would return to reading 0 V, as no battery is connected. However, due to the platinum acting as a catalyst, facilitating the recombination of hydrogen and oxygen, the voltmeter initially registers approximately 1 V. Over time, this voltage gradually diminishes until reaching 0 V.

EXPERIMENT 2: Assembly of fuel cell car from scientific kit and its operation

Required materials:

Fuel Cell Car Science Kit - FCJJ-11² or similar

Procedure:

1. Follow the procedure from the manufacturer's instructions^{3–9}

REFERENCES

Building a Hydrogen Fuel Cell https://scitoys.com/scitoys/scitoys/echem/fuel_cell/fuel_cell.html.
Description, P.; Pack, L. Fuel Cell Car Science Kit Product Description Features Experiment & Activities Language Pack Fuel Cell Car Science Kit Packing Information Kit Content. 11–12.
FCJJ 11 - FCJJ-11 Student's Guide-Physics-Advanced Energy.
Generation, N.; Standards, S. FCJJ-11 Teacher's Guide -Physics-Advanced Energy.
Generation, N.; Standards, S. FCJJ11_Redox_CH_Student_V2.
Generation, N.; Standards, S. FCJJ11_Reactions_CH_Teacher_V2.
Generation, N.; Standards, S. FCJJ11_Reactors_CH_Student_V2.
Generation, N.; Standards, S. FCJJ11_Readox_CH_Teacher_V2.
Horizon Fuel Cell Technologies. FCJJ11_User Manual. 0–1.

EXERCISE 3: Modern batteries

DESCRIPTION

Modern batteries represent a pivotal cornerstone in powering our increasingly digital and mobile world. With advancements in technology, batteries have evolved from simple cells to complex energy storage systems, enabling various applications from smartphones to electric vehicles.

One of the key areas of development in modern batteries is energy density. Engineers continually strive to pack more energy into smaller and lighter packages, enhancing the runtime of portable devices while reducing their size and weight. Lithium-ion batteries have been at the forefront of this revolution, offering high energy density and rechargeability, making them the go-to choice for smartphones, laptops, and electric vehicles. However, sustainability has become a crucial focus in battery technology too. Researchers are exploring alternative materials and manufacturing processes to minimize the environmental impact of battery production and disposal. From recyclable materials, and abundant elements to solid-state electrolytes, efforts are underway to create batteries that are not only efficient but also eco-friendly.

In this respect, the future of batteries holds promise for even greater advancements. From solidstate batteries with enhanced safety and longevity to next-generation chemistries like lithiumsulfur, zinc-air, and sodium-ion, researchers are exploring diverse avenues to push the boundaries of energy storage technology. As technology continues to evolve, so too will batteries, driving innovation and shaping the landscape of our energy future.

DIDACTIC-METHODICAL COMMENTARY

This teaching unit is designed as step-by-step instruction. Students will find out more about principles, applications, and importance of Zinc-air batteries through experimental work and by using textbooks and other available sources.

EXAMPLE RESOURCES FOR EXPERIMENTAL WORK IN STEM ENVIRONMENT ON THE TOPIC "Zinc-air battery"

Resource 1: <u>Zinc-air battery</u>. To assemble a Zinc-air battery using household materials and chemicals and gain insight into the fundamental principles of Zn-air electrochemistry.

SAMPLE INVESTIGATIVE QUESTIONS ON THE TOPIC INTENDED FOR PROJECT ACTIVITIES IN STEM ENVIRONMENT:

- How does the energy density of zinc-air batteries compare to other commonly used battery technologies?
- 2. What are the main advantages and disadvantages of zinc-air batteries in terms of cost, performance, and environmental impact?
- 3. How do variations in design and construction affect the efficiency and lifespan of zinc-air batteries?
- 4. How is a metal air battery similar to a fuel cell?
- 5. What role do catalysts play in improving the performance of zinc-air batteries, and how can their effectiveness be optimized?

- 6. What are the key challenges associated with the rechargeability of zinc-air batteries, and what strategies can be employed to overcome them?
- 7. How does the rate of oxygen diffusion influence the overall performance and energy output of zinc-air batteries?
- 8. What are the potential applications for zinc-air batteries in renewable energy storage systems, grid stabilization, and electric vehicles?
- 9. How do environmental factors such as temperature and humidity affect the operation and longevity of zinc-air batteries?
- 10. What advancements are being made in materials science to enhance the durability and stability of zinc-air battery components?
- 11. How can mathematical modeling and simulation be utilized to predict the behavior and optimize the performance of zinc-air batteries under different operating conditions?

Resource 1

ZINC-AIR BATTERY

BRIEF INFORMATION ABOUT THE LEARNING RESOURCE

Subjects	Chemistry, Physics,
Age	Students
Time for execution	5 hours

This learning resource is designed to help gain a solid understanding of Zinc-air batteries, which are essential for sustainable energy storage. It explores the principles, applications, and importance of Zinc-air batteries in various fields such as renewable energy, environmental science, and engineering, making it accessible and relevant across diverse domains.

INTRODUCTION AND THEORETICAL BASIS¹

This learning resource is meticulously crafted to offer a comprehensive understanding of zinc-air batteries through a diverse array of approaches. By integrating the following elements, it strives to provide an enriching educational journey aimed at facilitating the acquisition of knowledge and skills pertinent to zinc-air batteries. Key topics covered include:

<u>Conceptual Understanding</u>: Delving into the foundational principles underlying zinc-air batteries, the resource elucidates topics such as electrochemistry, cell design, and reaction mechanisms. This knowledge serves as a cornerstone for further exploration and comprehension.

<u>Practical Applications</u>: Providing insights into the real-world utilization of zinc-air batteries across various industries, including renewable energy storage, transportation, and consumer electronics. Through case studies and examples, learners gain an understanding of how these batteries are employed in practical scenarios.

Experimental Exploration: Offering hands-on experiments and demonstrations that enable learners to directly observe the behavior of zinc-air batteries. Through investigations into factors such as voltage output, efficiency, and performance under diverse conditions, participants develop a deeper comprehension of battery operation.

<u>Problem-Solving Exercises:</u> Presenting challenging problems and scenarios related to zinc-air batteries, the resource encourages learners to apply their knowledge to solve practical challenges. This approach fosters the development of critical thinking skills and reinforces conceptual understanding.

<u>Collaborative Learning</u>: Facilitating group activities, discussions, and collaborative projects that create an environment conducive to the exchange of ideas and experiences. Through peer interaction, learners deepen their understanding of zinc-air batteries while fostering teamwork and enhancing learning outcomes.

By incorporating these diverse elements, this learning resource endeavors to provide a holistic and engaging educational experience, empowering participants to gain comprehensive knowledge and skills relevant to zinc-air batteries.

RATIONALE FOR CONDUCTING THE EXPERIMENT

The rationale behind experimenting to build a simple zinc-air battery encompasses various facets, offering a comprehensive approach to learning. Firstly, it provides hands-on learning, offering participants a tactile and interactive experience that solidifies their understanding of electrochemistry and energy storage. As they engage in constructing the battery, learners gain firsthand insight into how its components collaborate to generate electricity. This practical engagement enhances comprehension by bridging theoretical knowledge with real-world application, reinforcing concepts like oxidation-reduction reactions, electron flow, and the roles of electrodes and electrolytes in galvanic cells. Moreover, building a zinc-air battery facilitates problem-solving and troubleshooting. Participants encounter challenges such as optimizing electrode materials, managing reaction rates, and enhancing electrical conductivity. Addressing these hurdles fosters critical thinking skills and encourages participants to devise innovative solutions, deepening their understanding of the underlying principles. Furthermore, zinc-air batteries are hailed for their potential in renewable energy storage due to their high energy density and cost-effectiveness. Constructing a zinc-air battery allows participants to explore the application of this technology in addressing energy storage challenges associated with renewable sources like solar and wind power, fostering an appreciation for sustainable energy solutions. Lastly, hands-on

experiments like this promote interest and engagement in STEM fields. By applying STEM concepts in a practical setting, participants are inspired to pursue future endeavors in science, technology, engineering, and mathematics. This not only cultivates a passion for learning but also nurtures the next generation of innovators and problem-solvers in STEM-related careers.

INVESTIGATIVE TASKS TO BE EXECUTED

Investigative tasks to be executed for building a simple zinc-air battery are sa follows:

- <u>Material Selection and Characterization</u>: Investigate different materials for the zinc anode and air cathode, considering factors such as reactivity, conductivity, and availability. Characterize the properties of selected materials, including surface area, porosity, and electrochemical performance, through techniques like scanning electron microscopy (SEM) and cyclic voltammetry.
- Electrolyte Optimization: Explore various electrolyte solutions to enhance the performance and stability of the battery, considering factors such as pH, ionic conductivity, and compatibility with the chosen electrode materials. Investigate the effect of additives or buffering agents on electrolyte properties and battery performance through experimentation and analysis.
- 3. <u>Electrode Fabrication Techniques:</u> Investigate different methods for fabricating zinc and air electrodes, such as electrodeposition, screen printing, or inkjet printing, to optimize their morphology and performance. Explore the influence of electrode preparation parameters, including temperature, deposition time, and precursor concentration, on electrode structure and electrochemical properties.
- 4. <u>Assembly and Cell Design:</u> Investigate various cell designs and configurations to optimize the assembly process and maximize battery performance. Experiment with different separators and packaging materials to enhance cell stability and prevent electrolyte leakage or gas crossover.
- 5. <u>Performance Testing and Characterization:</u> Develop protocols for testing the electrochemical performance of the zinc-air battery, including methods for measuring voltage output, capacity, and cycle life. Investigate the effect of operating conditions such as temperature, humidity, and discharge rate on battery performance through systematic testing and analysis.
- 6. <u>Long-Term Stability and Durability Studies:</u> Conduct long-term stability and durability studies to assess the battery's performance under continuous operation and cycling conditions. Investigate degradation mechanisms and failure modes through post-mortem analysis, including examination of electrode morphology and chemical composition.
- Environmental Impact Assessment: Investigate the environmental impact of the zinc-air battery, including the sustainability of raw materials, energy consumption during manufacturing, and potential for recycling or disposal. Evaluate the life cycle assessment (LCA) of the battery to understand its overall environmental footprint and identify opportunities for improvement.

Hypothesis: Using chemical and mechanical methods one can improve the performance of the Zn-air battery.

INVESTIGATIVE EXPERIMENT

EXPERIMENT 1: "Building simple Zinc-air battery"2

Required materials:

- Copper electrode
- Zinc electrode
- Alligator clips electrical test leads set of 2
- Multimeter and red diode
- Water cup
- Sodium chloride (about 25 g)
- Measuring cup, metric
- Bowl that can hold at least 500 mL
- Teaspoon
- Water
- Kitchen scale
- Hydrogen peroxide (3%) (about 20 mL)
- Straw
- Timer or watch with second hand

Procedure:³

- Begin by preparing the saltwater electrolyte for your zinc-air battery. Dissolve 25 g of NaCl in a bowl filled with 0.5 L of water.
- Label three water cups as #1-3 using a permanent marker. Conducting three trials concurrently ensures the accuracy and reproducibility of results.
- 3. Prepare your electrodes:
 - a. Designate the Cu electrode as your cathode.
 - b. Designate the Zn electrode as your anode.
- 4. Pour 150 mL of the prepared saltwater electrolyte into each labeled cup or jar.
- Insert one Zn and one Cu electrode into each cup or jar, ensuring they are placed on opposite sides to face each other. Take care to prevent them from touching to avoid accidental short circuits.
- Connect Alligator clips to electrical test leads, with the red lead connected to Cu and the black lead to Zn. The other ends should be connected to the red diode, which should illuminate.
- 7. You are now ready to test the functionality of your batteries. Test each battery successively with a multimeter under the following conditions, disconnecting the diode and connecting the multimeter:
 - a. No addition to the electrolyte
 - b. Continuous stirring
 - c. Continuous blowing bubbles with a straw

- d. Addition of 5 mL of 3% H_2O_2
- e. Addition of 5 mL of 3% H₂O₂ plus continuous stirring
- 8. Measure the open-circuit voltage and short-circuit current of each zinc-air battery. Begin with the first trial and proceed with the other two. These measurements provide the highest voltage and current that your battery can supply, although note that it cannot simultaneously provide both.

REFERENCES

- Li, Y.; Dai, H. Recent Advances in Zinc-Air Batteries. *Chem. Soc. Rev.* **2014**, *43* (15), 5257–5275. https://doi.org/10.1039/c4cs00015c.
- How to Make a Battery with Metal, Air, and Saltwater https://www.sciencebuddies.org/sciencefair-projects/project-ideas/Chem_p107/chemistry/make-a-battery-with-metal-air-andsaltwater#procedure.
- Procedure, E. How to Make a Battery with Metal, Air, and Saltwater | Science Project. 2021.

Example: Sustainable Technologies in Science Education- Part 2. Teaching Unit via Project-Based Learning

Description of innovative Green STEAM teaching/learning unit

Sub	Subject: Sustainable Technologies in Science Education		
Тор	ics: Sustainable Technologies		
Cur	riculum objectives:		
	Understand Sustainable Energy Concepts Understand the principles of hybrid renewable energy systems. Design and analyse integrated systems combining multiple sustainable technologies. Define and explain the principles of sustainable energy. Identify the environmental impacts of traditional energy sources. Describe the working principles of hydrogen fuel cells. Analyse the advantages and challenges of hydrogen fuel cell technology. Demonstrate the ability to design and construct a basic hydrogen fuel cell. Explain the process of electrolysis for hydrogen production. Evaluate the efficiency and practical applications of electrolysers. Compare and contrast lithium-ion batteries with emerging battery technologies. Analyse the environmental and economic implications of different battery types. Demonstrate the ability to design and test a battery system. Understand the concept of electrochemical microreactors. Explain the principles of photovoltaic energy conversion. Analyse the efficiency and limitations of solar photovoltaic systems. Design and optimize a photovoltaic system for a given scenario. Describe the working principles of wind turbines.		
Key	words: green STEM, sustainable technologies, project-based learning		
Mio pre	rning tools: learning management system (e.g. Moodle), collaboration platform (e.g. crosoft Teams), literature databases (e.g. Scopus, Web of Science, Google Scholar, ERIC), sentation, documentation, and spreadsheet software (e.g. PowerPoint, Word, Excel), phics tool (e.g. Canva), tools for school experimental data collection (e.g. Vernier sensors)		
Lite	erature resources for students		
obl	igatory: /		
ada	litional:		
	çer, İ., & Erdemir, D. (2023). Introduction to Energy Systems. John Wiley & Sons. k Savec, Vesna (2010). Projektno učno delo pri učenju naravoslovnih vsebin : učbenik Maribor: Fakulteta za naravoslovje in matematiko.		

He, G. (2024). *Electrochemical Energy Storage Technologies Beyond Li-ion Batteries*. Korthauer, R. (Ed.). (2018). *Lithium-ion batteries: basics and applications*. Springer. Monconduit, L., & Croguennec, L. (2021). *Les batteries Na-ion*. ISTE Group.

Literature resources for (future) teachers

Obligatory/additional:

Dinçer, İ., & Erdemir, D. (2023). Introduction to Energy Systems. John Wiley & Sons.

- Ferk Savec, Vesna (2010). *Projektno učno delo pri učenju naravoslovnih vsebin : učbenik*. Maribor: Fakulteta za naravoslovje in matematiko.
- Hacker, V., & Mitsushima, S. (Eds.). (2018). Fuel cells and hydrogen: from fundamentals to applied research. Elsevier.

He, G. (2024). *Electrochemical Energy Storage Technologies Beyond Li-ion Batteries*. Korthauer, R. (Ed.). (2018). *Lithium-ion batteries: basics and applications*. Springer. Monconduit, L., & Croguennec, L. (2021). *Les batteries Na-ion*. ISTE Group.

Teaching method(s): project-based learning, experimental work

THEORETICAL BACKGROUND

THEORETICAL BACKGROUND

The course for teachers combines contents, tools and good practices that involve PBL, IBL, and Engineering Design-Based innovative methodologies with a hybrid approach.

A. In Green STEM program tools, activities start with authentic problems. Authentic problems also serve as significant incentives for students to engage in inquiry-based and problem-based learning. Authentic problems define the types of problems that can support students in scientific inquiry skills (Burrows et al., 2016), address the real-life working styles of scientists and researchers in science-related fields (Hsu et al., 2010), and how science is applied (van Eijck & Roth, 2009). Therefore, the activities exemplified in the Green STEM project include authentic research problems that can support students' inquiry by focusing on hands-on and minds-on engagement.

For example, the activity titled "TOPIC B.1: Atmospheric Water Harvesting" starts with an authentic problem related to harvesting water from the atmosphere, also known as atmospheric water harvesting, to obtain usable water by extracting moisture from the air. The activity aims to have students solve problems related to water procurement in areas experiencing water scarcity and provide a potential solution for regions with limited access to freshwater sources. Various techniques such as condensation, dew collection, fog harvesting, and Atmospheric Water Generators (AWGs) need to be researched by students in the activity, and they should acquire knowledge and test them in laboratory environments.

B. In Green STEM program tools, the design and engineering process is uniquely supported and enhanced. Current methodologies and approaches on engineering design processes and designbased learning are clearly defined in activity flows and implementation processes. The theoretical content under the title "TOPIC A.5: Green STEM and Future of Works and Skills in the Green Industry" extensively emphasizes the importance of design and engineering professions within green careers. During workshops or seminars organized as part of the dissemination process of the Green STEM model, the activity artifacts, presentation, and discussions of Green STEM project designs related to TOPIC 8-14 form a significant discussion topic on design and engineering. Materials and observation protocols developed for teachers have benefited from the innovative methods of design and engineering from Gunbatar et al. (2022), Dare et al. (2021) and Ong et al. (2023).

C. Laboratory studies and processes found in the Green STEM program tools support innovation in a way that enables students to understand green mathematics, science, and engineering concepts. Inquiry-based learning is an instructional approach tailored for learning through laboratory processes. In activities developed for the Green STEM program, students are encouraged to interact through exploration and high-level inquiry (mostly open inquiry tasks), establishing real-world connections. Professional development tools prepared for teachers encourage them to guide the instructional process in various roles that can be expressed as diagnostician, motivator, innovator, experimenter, researcher, modeler, and learner (Crawford, 2000). Thus, an instructional approach that encourages students to engage in problem-solving and experimental learning is adopted. In activities, students are supported in their active participation or motivation in at least one of the

processes such as questioning, designing, data collection, reaching conclusions, or communication of learning, as defined by Minner et al. (2010):

- the presence of science content,
- the student's active involvement in science content,
- their responsibility for learning through at least one of the processes of questioning, designing, data collection, reaching conclusions, or communication, supporting their active participation or motivation.

D. The project activities in the Green STEM program tools support evidence-based (data-driven) thinking. This also provides an approach supported by "The Informed Design Teaching and Learning" defined by Crismond & Adams (2012) and IBL. Evidence is used for students to evaluate, revise, and improve their designs. The stages of "Evaluation of the Product/Solution," "Improvement," and "Reflecting/Sharing" included in the activity flows are designed precisely for this purpose. This aims to ensure that the designs students present in green STEM activities have consistent and precise (usable) data. When students see how and why the information obtained in the designs is used, they experience a "eureka" moment. This also initiates an endless design cycle for them. By continually developing, reassessing, and improving their designs based on real evidence and observations, students can reach innovative final designs. Crismond & Adams (2012) published valuable research presented for an understanding that can be adopted in activities for the informed design teaching and learning matrix.

TEACHING MATERIALS AND EXAMPLES OF GOOD PRACTICES

Example: Biomimicry Nanofabrics & Environmental Industry Practices

Description of innovative Green STEAM teaching/learning unit

I Industry Practices as in nature through the lotus effect, cience and nanotechnology by learning the nt fabrics, ing the properties of water-repellent fabrics		
is in nature through the lotus effect, cience and nanotechnology by learning the nt fabrics,		
is in nature through the lotus effect, cience and nanotechnology by learning the nt fabrics,		
cience and nanotechnology by learning the nt fabrics,		
cience and nanotechnology by learning the nt fabrics,		
cience and nanotechnology by learning the nt fabrics,		
effect.		
the design of nano water-repellent fabrics, portunities to experience design thinking,		
technological tools and materials to s,		
ence in using technological tools to evaluate		
easurement, calculation, and data analysis		
 Understands and applies mathematical methods used to evaluate the performance of water-repellent fabrics. Art objectives: 		
and aesthetic understandings in the design		
es to express design ideas artistically and		
 GD2.d. Innovative Practices for Sustainable Production and Reduction of Carbon Emissions and Greenhouse Gas Emissions in the Textile and Leather Sectors. 		
o water repellency, Nano hydrophobic fabrics		
x, Vaseline, fabric wax, Superhydrophobic ting (Spray), Various fabrics, Test materials ch as plastic bottles, sponges, droppers, oden sticks, measuring equipment, etc.)		
Literature resources for students Arabacioglu, S. (2022). Can nanotechnology keep us dry in the rain: An inquiry-based activity		
to help students improve their investigation skills. International Journal of Technology in		
Education and Science (IJTES), 6(3), 410-426. https://doi.org/10.46328/ijtes.395		
Literature resources for (future) teachers		
Arabacioglu, S. (2022). Can nanotechnology keep us dry in the rain: An inquiry-based activity		
to help students improve their investigation skills. International Journal of Technology in		
Education and Science (IJTES), 6(3), 410-426. https://doi.org/10.46328/ijtes.395		
Blonder, R., & Mamlok-Naaman, R. (2016). Learning about teaching the extracurricular topic of nanotechnology as a vehicle for achieving a sustainable change in science education. International Journal of Science and Mathematics Education, 14(3), 345–372. https://doi.org/10.1007/s10763-014-9579-0		

Ghattas, N. I., & Carver, J. S. (2012). Integrating nanotechnology into school education: A			
review of t	review of the literature. Research in Science and Technological Education, 30(3), 271–		
284. https:,	//doi.org/10.1080/02635143.2012.732058		
Mandrikas, A., N	Aichailidi, E., & Stavrou, D. (2020). Teaching nanotechnology in primary		
education.	Research in Science and Technological Education, 38(4), 377–395.		
https://doi	.org/10.1080/02635143.2019.1631783		
Sakhnini, S., & B	Sakhnini, S., & Blonder, R. (2016). Nanotechnology applications as a context for teaching the		
essential co	essential concepts of NST, International Journal of Science Education, 38(3), 521-538.		
https://doi	.org/10.1080/09500693.2016.1152518		
Teaching	Problem-Based Learning, Inquiry-Based Learning, Project-Based Learning,		
method(s):	Design Thinking and Engineering Design, Hands-on Science, Applied		
	Learning, Technology-Enhanced Learning.		

Scenario of Green STEAM teaching/learning unit

Phase	Required Teachers' activity Students' activity		Students' activity
FildSe	time	leachers activity	Students activity
Recalling the Known and Experiences	30 min	The teacher can start by grabbing students' attention and introducing the topic with an interesting question or story. For example, they might ask students about the challenges they face on a rainy day or how they feel in the rain. Then, they can explain to the students what water-repellent fabrics are and how they work. By describing the features and benefits of these fabrics, they help students better understand the topic. By illustrating different application areas of water- repellent fabrics with examples, the teacher assists students in comprehending the significance of these fabrics in daily life. Providing examples of water-repellent fabrics or supporting with visuals gives students a more concrete idea. Djital araç – Yağmurluklu bir insan görseli üzerinden tartsma	Students can share what kind of experiences they have had in rainy weather and how water behaves when they come into contact with rain. A discussion is initiated based on these experiences. Students are asked questions to understand why and how water-repellent fabrics work. For example, what are the characteristics of water- repellent fabrics? What are the advantages of water repellency fabrics? Students can research the different application areas of water-repellent fabrics. For example, raincoats, sportswear, outdoor materials, etc. They can discuss in groups the importance of increasing the functionality and comfort of water-repellent fabrics. Each group can address a specific application area and discuss the advantages these fabrics provide.
Research & Questions	1 hour	Students are instructed to obtain leaves from water lilies, taro plants, members of the Brassicaceae family, lady's slippers, ginger plants, and garden roses. They are asked	Students examine leaves obtained from the specified plant species under a magnifying glass. They take notes on the observed patterns or structures.

		to closely examine the leaves	They place a drop of water
		under a magnifying glass and	on the leaf surface. They
		discuss the patterns or	observe the behavior of the
		structures they observe.	water droplets and explain
		Students are asked to place a	what is happening. They
		droplet of water on the leaf	compare the behavior of
		surface and observe the	water droplets on different
		behavior of the water	plant leaves and discuss the
		droplets, explaining how they	differences.
		behave. They are encouraged	They record their
		to compare the behavior of	observations and
		water droplets on different	experimental results on
		plant leaves and discuss	Worksheet 1.
		possible reasons, prompting	They deepen and discuss
		discussions.	their research within specific
		Students are encouraged to	questions. They describe
		record their observations and	micro/nano structures and
		experiment results on	discuss their water-repellent
		Worksheet 1. They are also	role. They examine the
		encouraged to further deepen	shape and behavior of water
		their research within specific	droplets on the leaf surface
		frameworks of questions.	and consider the reasons
		They are asked to identify the	behind them. They
		micro/nano structures on the	contemplate practical
		surface of lotus leaves and	applications of mimicking
		discuss their water-repellent	the characteristics of lotus
		role. They are prompted to	leaves. They research if there
		think about how	are other plant examples in
		nanostructures reduce the	nature with water-repellent
		contact area between water	strategies.
		droplets and the leaf surface.	
		Discussions are encouraged	
		on why water droplets on	
		lotus leaves form nearly	
		spherical shapes and	
		obstacles to spreading are	
		addressed. Students are	
		encouraged to discuss	
		potential everyday	
		applications of mimicking the	
		surface properties of lotus	
		leaves. They are also	
		encouraged to research	
		whether there are other	
		examples in nature with	
		water-repellent strategies	
		similar to lotus leaves.	
C		Students are encouraged to	Churchendra dia sura sura sura di s
Generate-	1 hour	brainstorm in groups to	Students discuss examples to
Solution	1 hour	design their own nano-	consider potential
Design:		hydrophobic fabrics. Each	applications in everyday life.
		group brainstorms by	For instance, they are

·			
		discussing different design	encouraged to discuss how
		ideas and features. It	products such as raincoats,
		encourages students to	water-resistant bags, or self-
		exchange ideas from different	cleaning surfaces could be
		perspectives.	utilized.
		Students are encouraged to	Students are given the
		fill out Worksheet 2 in groups.	freedom to choose the
		They are assisted in	materials they will use for
		identifying design ideas and	the product they design.
		features, and the design	They select materials such as
		process is guided.	wax, superhydrophobic
		· · · · · · · · · · · · · · · · · · ·	coatings, and various fabrics.
			With the materials they
			choose, they create a simple
			prototype. This prototype
			helps them see how the
			design works and allows
			them to make
			improvements.
			During the design process,
			they focus on the following
			design criteria:
			Design Criteria:
			Focuses on reducing
			environmental impacts and
			adhering to sustainability
			principles in material
			selection and use.
			• Designed for potential real-
			life applications (e.g.,
			raincoats, waterproof bags,
			or self-cleaning surfaces,
			etc.).
			Creates simple prototypes
			of their products using
			environmentally friendly
			materials (such as wax,
			vaseline, paraffin, wax,
			superhydrophobic coatings,
			different fabrics (feather,
			parachute, upholstery), etc.).
		Students are provided with	Students transform their
		various fabric samples, spray	own ideas into tangible
		coatings, brushes, and other	prototypes and test them.
		necessary materials. They are	They use various materials
Droteture		encouraged to use these	such as fabric samples, spray
Prototype Creation and	1 hour	materials to bring their own	coatings, brushes, etc., to do
		ideas to life. Guidance is	this. They create prototypes
Testing:		provided to help them	using their own ideas and fill
		materialize their ideas, and	out Worksheet 3.
		support is given as needed.	They note down what they
			did at each step, which

		Students are encouraged to	materials they used, and
		fill out Worksheet 3 to	what results they obtained.
		document the prototype	Water Repellency Tests:
		creation process step by step.	Students have the
		They are prompted to take	opportunity to test the water
		notes on what they did at	repellency of their fabric
		each step, what materials	prototypes and evaluate the
		they used, and what results	results. They gain general
		they achieved.	knowledge about how
		Water Repellency Tests:	water-based experiments are
		Students are given the	conducted and plan
		opportunity to test the water	controlled experiments. They
		repellency of their fabric	record the data,
		prototypes and evaluate the	observations, and results
		results. They are guided in	obtained during the
		planning various experiments	experiments. They compare
		to test the water repellency of	the performance of fabric
		fabric prototypes. General	prototypes with regular
		information is provided on	fabric samples and analyze
		how to conduct water-based	the results.
		experiments, with an	
		emphasis on controlled	
		experimental practices.	
		Students are encouraged to	
		record the data, observations,	
		and results they obtain during	
		the experiments. They are	
		provided with the opportunity	
		to compare the performance	
		of fabric prototypes with	
		regular fabric samples and	
		analyze the results.	
		Students are encouraged to	Each student or group
		prepare a presentation to	presents their own
		introduce the prototypes of	prototypes through a
		nano hydrophobic fabric. They	suitable Web 2.0 tool. They
		are asked to decide on one of the various Web 2.0 tools	provide detailed information about the biomimicry
		such as Prezi, PowerPoint,	,
		Canva, etc., that they can use	principles used. Within the class, students
Product		for this purpose. Students are	examine each other's
Introduction,		encouraged to share on the	prototypes. They discuss the
Discussion,	30 min	following topics during the	advantages and
and		presentation:	disadvantages of each
Evaluation			prototype and exchange
		 Introducing the 	ideas about the challenges
		prototypes to the	encountered in applying
		class and	biomimicry principles.
		emphasizing the	They review the designs of
		biomimicry	other groups and compare
		principles used.	them with their own
		 Presenting the 	prototypes. They determine
		test results and	

providing evidence of the effectiveness of each design. • Sharing the encountered challenges and lessons learned about water- repellent fabrics. For evaluation purposes, students are expected to:	which features are more successful. Based on the feedback received from other groups, they discuss how they can improve their prototypes. They speculate on how to apply biomimicry principles more effectively.
 Compare their prototypes with those of other groups. 	
 Evaluate which biomimicry approach is more effective. 	
 Provide suggestions on how to improve the prototypes. 	
 Engage in discussions on how to use biomimicry principles more effectively. 	

Example: Atmospheric Water Harvesting

Description of innovation	Green STEAM tea	ching / learning unit
beschption of mnovation	Green Steran tea	ching / icuting and

Description of innovation Green STEAWI teaching / learning unit		
Educational level (students ' age): Middle School – High School		
Subject : Green STEM		
Topics : Atmospheric Water Harvesting		
Curriculum objectives :		
Science Learning Outcomes:		
Students understand the water cycle (Understanding)		
• Students understand the concept of obtaining water from air by condensation		
(Understanding)		
 Students learn the importance of water conservation and discover sustainable water solutions (Comprehension). 		
They apply basic science principles to make the prototype more efficient		
(Application)		
 Evaluates the methods of obtaining water from the atmosphere (Evaluation) 		
Engineering Learning Outcomes:		
 Students design and build a model device to collect water from the air. 		
In the design and construction process, students use critical thinking, problem		
solving and teamwork skills.		
 Learns how to calculate the efficiency of the device. 		
Technology Learning Outcomes:		
• Students measure and analyze the humidity in the air and in the prototype using		
sensors and data collection devices (scales, thermometers, etc.) .		
• Students learn different atmospheric water harvesting technologies and their use.		
 Students present their model devices to the class (with elements such as information, graphs, atc.) and show that the understand the homesting water. 		
infographics, graphs, etc.) and show that they understand the harvesting water		
from the atmosphere by explaining it .		
Mathematics Learning Outcomes:		
It shows the drought in its regions in the form of a regional rainfall amount-month		
graph or similar graphs.		
 Students analyze the water demand in the region with mathematical models and 		
calculate the amount of water that the required water harvesting device must		
provide.		
They calculate the efficiency of the vehicle.		
Art Learning Outcomes:		
Students pay attention to aesthetic values in the design of the water harvesting		
device and use creative, motivative elements when developing the prototype .		
Entrepreneurship		
 Determines societal needs and comes up with creative solutions to address them. 		
 Makes use of mass communication platforms to advertise the created goods. 		
 Uses written, visual, and spoken communication techniques to clearly and 		
consistently convey his thoughts and discoveries to the professional target		
audience.		
Green STEM achievement:		

Project 2022-1-BG01-KA220-HED-000088567 Green STEM model for teachers education Page 56 of 76

Suggests using environmentally friendly green scientific techniques to reduce the impact of human activity on the environment in order to address societal issues or demands.

21st Century Skills

•

- Improves problem solving skills.
- Improves collaborative working skills.
- Improves his/her sensitivity to the environment and the world he/she lives in increases.

THE NATURE OF SCIENCE (OR SCIENTIFIC INQUIRY):

- Creates or revises scientific explanations based on valid and reliable data or evidence obtained from sources (including students' own experiments).
- Conducts research and/or evaluates and/or revises the experimental design to find a solution to the problem and obtain data.

Related Green Deal (Green Deal) Strategies:

GD1. Climate Change, Environment and Biodiversity : The Purpose of Regulating Climate Change, Carbon Emission and Greenhouse Gas Emissions

Theoretical Information

One of the biggest worldwide issues affecting many regions of the world is water scarcity. The lack of freshwater resources that makes it difficult for the populace to achieve their basic water needs is referred to as water scarcity. There are several factors contributing to this shortage, including human and natural influences. Due to prolonged droughts and erratic rainfall brought on by climate change, there is now less water available. Furthermore, pollution, population expansion, and inadequate water management exacerbate this issue. Many arid and semi-arid nations today, including those in Africa, the Middle East, and some regions of Asia, struggle with a lack of water. These areas experience significant difficulties in accessing clean water, resulting in deterioration of food security and public health, agricultural restrictions and negative effects on socioeconomic growth. Efforts to address water scarcity include implementing sustainable water management strategies, promoting water conservation practices, and investing in water purification and desalination technologies.

Getting water from air, also known as atmospheric water harvesting , is a process that involves extracting moisture from the atmosphere to obtain usable water. This innovative approach addresses the problem of water scarcity and offers a potential solution for regions with limited access to freshwater resources. Various techniques are used to extract water from air, such as condensation, dew harvesting, fog harvesting and atmospheric water generators (AWGs). Condensation refers to the cooling of air to cause water vapor to condense into liquid form. Dew collectors use large surfaces to capture dew droplets that form during the night. Fog collectors use nets to capture water droplets from passing fog. AWGs use cooling or drying methods to remove water vapor from the air, which is then condensed and filtered to produce drinkable water. These methods are seen as promising opportunities for sustainable water supply in arid, semi-arid or coastal regions, as they use moisture contained in the air to create freshwater sources. Ongoing research and technological advances in atmospheric water harvesting have great potential to alleviate water scarcity problems worldwide.

Key words :

Climate change , water scarcity , atmospheric water harvesting , condensation , moisture , dew , fog , biomimicry , passive cooling methods , adsorbents

	- · · ·		
Learning tools :	Equipment :		
Worksheets	white papers		
Digital Tools	Colorful pencils		
	Laptop and projector for multimedia screenings		
	Construction materials (e.g. plastic bottles, sponges,		
	rubber bands, different perforated fabrics, scissors, tape,		
	glue, wooden sticks, cardboard boxes, cardboard, etc.)		
	thermometers		
	Hygrometer		
	water vapor diffuser		
	water spray bottle		
	Glasses or containers to collect water		
	Different substances on which condensation will occur		
	Mirror		
	Piece of Metal		
Literature resources for teachers			
obligatory :			
BİLDİREN, Ş., & SARGINCI, M. (20	22). An Alternative Solution Proposal to Water Shortage Due		
to Climate Change: Atmosph	neric Water Harvesting. Duzce University Ornamental and		
	Garden Journal , 1 (1), 21-35.		
Sleiti, A.K., Al-Khawaja, H., Al-Kha	awaja, H., & Al-Ali, M. (2021). Harvesting water from air		
using adsorption material–P	rototype and experimental results. Separation and		
Purification Technology , 25	7,117921.		
Villacrés, D.C., Carrera Villacrés, J	.L., Braun, T., Zhao, Z., Gómez, J., & Carabalí, J.Q. (2020). Fog		
harvesting and IoT based en	vironment monitoring system at the Ilalo volcano in		
Ecuador. International journal on advanced science, engineering and information			
technology , 10 (1), 407-412.			
Verbrugghe, N., & Khan, A.Z. (202	Verbrugghe, N., & Khan, A.Z. (2023). Water harvesting through fog collectors: a review of		
conceptual, experimental and operational aspects. International Journal of Low-Carbon			
Technologies , 18 , 392-403.	Technologies , 18 , 392-403.		
Jarimi, H., Powell, R., & Riffat, S. (2020). Review of sustainable methods for atmospheric			
water harvesting. International Journal of Low-Carbon Technologies , 15 (2), 253-276.			
Bilal, M., Sultan, M., Morosuk, T., Den, W., Sajjad, U., Aslam, M.M., & Farooq, M. (2022).			
Adsorption-based atmospheric water harvesting: A review of adsorbents and systems.			
International Communicatio	ns in Heat and Mass Transfer , 133 , 105961.		
additional :			
Below are links to websites conta	aining the drought and its effects in our region. It is		
recommended that you read the	se sites first, as they can be used as a guide in your design:		
https://www.cnnturk.com/turkiye	e/kesanda-2-5-aylik-su-kaldi-kararlara-uymayanlara-		
ceza?page=6			
https://www.aa.com.tr/tr/ekonor	ni/trakyada-kuraklik-ayciceginde-buyuk-verim-kaybina-		
neden-oldu/3025824			
https://www.hurriyet.com.tr/gun	https://www.hurriyet.com.tr/gundem/edirnede-kuraklik-alarmi-belediye-baskani-barajin-		
ortasindan-cagri-yapti-42346675			
https://www.ntv.com.tr/galeri/tu	rkiye/kuraklik-35-yildir-tarim-arazisinin-sulandigi-goleti-de-		
vurdu,Bp9Q9JrIj0m-tL6LmXQWug			
https://www.edirne.bel.tr/icerik/	baskan-gurkan-son-63-yilin-en-kurak-subat-ayini-gecirdik		
https://www.cumhuriyet.com.tr/turkiye/meteorolojinin-verileri-gozler-one-serdi-edirnede-			
korkutan-goruntu-ciftci-ekim-yapamadi-1997363			

https://www.haberturk.com/edirne-haberleri/32896574-edirnede-kuraklik-kanola-ekiminiolumsuz-etkiledi
Literature resources for students
obligatory :
BILDIREN, Ş., & SARGINCI, M. (2022). An Alternative Solution Proposal to Water Shortage Due to Climate Change: Atmospheric Water Harvesting. *Duzce University Ornamental and Medicinal Plants Botanical Garden Journal , 1* (1), 21-35.
Sleiti, A.K., Al-Khawaja, H., Al-Khawaja, H., & Al-Ali, M. (2021). Harvesting water from air using

- Sleiti, A.K., Al-Khawaja, H., Al-Khawaja, H., & Al-Ali, M. (2021). Harvesting water from air using adsorption material–Prototype and experimental results. *Separation and Purification Technology*, 257, 117921.
- Villacrés, D.C., Carrera Villacrés, J.L., Braun, T., Zhao, Z., Gómez, J., & Carabalí, J.Q. (2020). Fog harvesting and IoT based environment monitoring system at the Ilalo volcano in Ecuador. *International journal on advanced science, engineering and information technology*, 10 (1), 407-412.
- Verbrugghe, N., & Khan, A.Z. (2023). Water harvesting through fog collectors: a review of conceptual, experimental and operational aspects. *International Journal of Low-Carbon Technologies*, 18, 392-403.
- Jarimi, H., Powell, R., & Riffat, S. (2020). Review of sustainable methods for atmospheric water harvesting. International Journal of Low-Carbon Technologies, 15 (2), 253-276.

Bilal, M., Sultan, M., Morosuk, T., Den, W., Sajjad, U., Aslam, M.M., ... & Farooq, M. (2022). Adsorption-based atmospheric water harvesting: A review of adsorbents and systems. International Communications in Heat and Mass Transfer, 133, 105961. additional.

--Below are links to websites containing the drought and its effects in our region. It is recommended that you read these sites first as they can be used as a guide in your design. https://www.cnnturk.com/turkiye/kesanda-2-5-aylik-su-kaldi-kararlara-uymayanlara-ceza?page=6

https://www.aa.com.tr/tr/ekonomi/trakyada-kuraklik-ayciceginde-buyuk-verim-kaybina-neden-oldu/3025824

https://www.hurriyet.com.tr/gundem/edirnede-kuraklik-alarmi-belediye-baskani-barajin-ortasindan-cagri-yapti-42346675

https://www.ntv.com.tr/galeri/turkiye/kuraklik-35-yildir-tarim-arazisinin-sulandigi-goleti-devurdu,Bp9Q9JrIj0m-tL6LmXQWug/LSIq7PJ8lkCXx7u_GkQsLw

https://www.edirne.bel.tr/icerik/baskan-gurkan-son-63-yilin-en-kurak-subat-ayini-gecirdik https://www.cumhuriyet.com.tr/turkiye/meteorolojinin-verileri-gozler-one-serdi-edirnede-korkutan-goruntu-ciftci-ekim-yapamadi-1997363

https://www.haberturk.com/edirne-haberleri/32896574-edirnede-kuraklik-kanola-ekiminiolumsuz-etkiledi

Teaching method (s):

 $\label{eq:problem-based-learning} \ , inquiry-based\ research\ ,\ project-based\ learning\ ,\ design\ thinking\ ,\ biomimicry\ ,\ engineering\ design$

Scenario of Green STEAM teaching / learning unit

Phase	Required time	Teachers ' activity Students ' activ	
Defining the Problem	1 hour	For the activity that aims to develop a prototype for water harvesting from the atmosphere, It is advised that you project the file from	-Students give examples of water scarcity in the region they live in and its effects on society.

	APPENDIX 1 onto the	- They discuss ways to
	classroom board to begin the	obtain clean water
	lesson by talking about the	- They discuss the concept
	value of water and the	of water harvesting from
	challenges associated with its	the air.
	scarcity before beginning the	- They are divided into
	activity (In addition, visuals or	groups of 2-3 people.
	films showing water scarcity	- The students are
	and its effects on	presented with the problem
	communities can be shown if	scenario and given the
	desired.)	chance to discuss it among
	-Students are expected to give	themselves to gauge their
	examples of water scarcity in	understanding of the issue.
	the region they live in and its	-Groups choose one of the
	effects on society.	atmospheric water
	-As the presentation	harvesting technologies by
	progresses, ways to obtain	lottery and are asked to
	clean water are discussed.	prepare a prototype in
	- Discusses the concept of air	accordance with that
	extraction as a potential	technology.
	solution to water scarcity.	- What is known about the
	-Explain that the class will	problem situation and the
	learn about condensation and	resulting opinions are
	design a model device to	recorded as a group in
	collect water from the air.	Student Worksheet 1,
	-For the activity, students are	where the problem is also
	divided into groups of 2-3	given in writing .
	people.	
	-The problem is given to the	
	students by projecting it on	
	the board and printed on the	
	worksheet.	
	-Different methods of	
	atmospheric water harvesting	
	are recommended in the plan	
	below, focusing only on	
	passive cooling technologies	
	to manage the process well. In	
	cases where there is no time	
	limit, all atmospheric water	
	harvesting technologies can	
	be focused on.	
	-Cards are created and printed	
	for each of the atmospheric	
	water harvesting	
	technologies. (Cards are given	
	in APPENDIX 2)	
	-Groups are allowed to	
	choose one of the	
1 1 1	atmospheric water harvesting	

		methods by drawing lots and focus on it. - The aim of the activity is for students to understand the summarized problem situation, and in order to reinforce student experiences, they are encouraged to think about the questions under the subheading of Remembering Known Things and Experiences in Student Worksheet 1.	
Remembering and Research	1 hour	In order to reveal their prior knowledge about the problem and possible solution(s), students are asked to write down what they know and their experiences within the framework of the following questions in the Remembering What is Known and Experiences section of Student Worksheet 1 . - What is drought? What are the effects that cause drought? -What might have caused the drought in a particular region? -What effects can drought have on the environment, agriculture and people? -How does drought affect agricultural products? Which agricultural products? Which agreet to combat drough? -What solutions can be suggested to combat drought? -What solutions can be suggested to combat drought? -What solutions can you make about what individuals or societies can do to cope with drought? -What is condensation? How does it happen? -Which factors affect the formation of water vapor in the atmosphere?	Regarding the problem situation, the information given in the Remembering What Is Known and Experienced section is given. Information and experiences regarding the questions are recorded as a group in Student Worksheet 1 . The answers found by doing the necessary research to the questions that need to be researched in Student Worksheet 1 are recorded in appropriate places. It is stated to cite their sources.

		Students are asked to consider what questions they need to find solutions to in order to solve the problem under the category "What Needs to be Researched". How, for instance, can water be extracted from the atmosphere? Which tools and techniques are available? -What are the advantages of collecting atmospheric water for the environment and society? What obstacles or restrictions exist when trying to get water from the atmosphere? Students are expected to conduct research and document their findings in Student Worksheet 1 for questions like these.	
		They are cautioned to cite their sources.	
Design and Creation	2 hours	Solution Producing-Product design At the stage , students to design wanted of the product to carry required features , design criteria aspect In Student Worksheet 2 is given . Design Criteria : Weather and Climate Conditions: Examine your region's climate to determine the best times and locations for water gathering. (You can get an idea by drawing a rainfall-month graph for your area.) Water Need: Determine the water need in your region and aim to produce enough water to meet this need. Portability and Easy Installation: The prototype should be aimed to be easy to install and portable, as this	All suggestions for problem- solving within the parameters of the specified design standards and technology are made and documented in Student Worksheet 2. Group discussions are used to choose the best idea. The supplies needed to put the chosen idea into practice are identified. A detailed explanation of the product's design is provided, and an engineer- quality sketch is created using precise dimensions. They are cautioned to cite their sources.

will provide flexibility for use	
in different places at different	
times.	
Savings and Efficiency: The	
aim should be to produce	
more water by consuming less	
energy.	
Material Selection and Cost:	
Aim to choose sustainable and	
cost-effective materials. (In	
which geometry and in which	
material does condensation	
occur more? Which materials	
have high water retention	
capacity? Which materials are	
adsorbents?)	
Reliability and Environmental	
Impacts: Aim for a design that	
will keep the vehicle's harmful	
effects on the environment to	
a minimum.	
aIIIIIIUIII.	
The design criteria are	
explained to the students.	
Students are encouraged to	
brainstorm, examine the	
design requirements and the	
technology they select, and	
provide various solutions to	
the challenge. Examine the	
drawings produced by each	
group and offer assistance as	
needed. Remind us how	
crucial it was to construct the	
model with consideration for	
elements like surface area,	
insulation, airflow, and	
condensate collection. Make	
students realize that there	
may be more than one correct	
path to the solution. Have	
them record all their ideas in	
Student Worksheet 2.	
Afterwards, students are	
directed to choose the most	
appropriate one among the	
ideas and use it to develop a	
prototype. In order to	
improve decision-making	

		abilla (AA/biab af Ab a isla) 111	
		skills, "Which of the ideas did you decide to use and why?" They are made to think by asking questions. At this stage, students are expected to decide what kind of prototype they will make within the design criteria. They are urged to determine the curplice required to earry	
		the supplies required to carry out the selected proposal. The supplies needed for the exercise are all ready in advance and given to the pupils in large quantities. Students should be asked to describe the design of the product in detail and draw it with measurements like an appriage.	
Prototype Creating and Testing	5 hours	engineer. In the Prototyping and Testing phase, students are guided to create a prototype of the product by implementing their plans and using appropriate materials. They are asked to test the resulting product. In this process; -Students are asked how they will determine the amount of condensation that will occur in the prototype. (Students can determine the initial mass of the prototype and the amount of water collected by measuring the mass from time to time during condensation. Or they may consider collecting the water in a container and measuring its mass. Or they may suggest using a hygrometer.) - Students are encouraged to use the information they have researched to think about the conditions under which	A prototype of the product is created by applying the drawing and using appropriate materials. The resulting product is tested by collecting water from the atmosphere. In this process; -It is recommended to generate ideas on how to collect condensation. -Factors that will accelerate condensation are discussed. -A graph is created against the amount of water collected. -Data is interpreted.

		 condensation will occur more quickly. While testing the product, it should be realized that they can provide humidity with a humidity-producing diffuser and shorten the process. Students are asked to spend a period of 4-5 hours (or more if the conditions are appropriate) to collect water and to determine the amount of water collected in certain periods of time and to draw graphs of the data they obtain. They are asked to think about how to calculate the efficiency of the prototype and use what they have researched. 	
Product Introduction, Discussion And Evaluation	1 hour	For Product Promotion, Discussion and Evaluation stage, -Each group is asked to explain to the class the features of their model devices and how water is obtained and collected. - Other students are encouraged to ask questions and provide constructive feedback. - A class discussion is led about the challenges encountered during the planning and construction phases. - The applicability and limitations of real-life water harvesting devices are discussed. - The importance of long-term water solutions and the contribution of STEM to the solution of global problems are emphasized.	A presentation is prepared by planning how the product will be introduced. The product of each group is evaluated under the guidance of the teacher and with the participation of all groups. Based on the evaluation, the class discusses how much the product solves the problem. In addition, the advantages and disadvantages of different design products produced by the groups are discussed with the participation of the whole class.

		- A concept map or diagram is created by combining the methods worked by each group according to the methods of obtaining water from air.	
Product Development	1 hour	Students are asked to discuss among themselves the changes they plan to improve the product and record them in Student Worksheet 2.	In order to improve the product, it is discussed in groups and changes that can be made to the product and how the product will be more efficient are planned and recorded in Student Worksheet 2.
What I learned sharing	1 hour	Students are asked to share what they have learned by discussing it within the framework of the questions written below and record it in Student Worksheet 3. - Write down what you learned during the preparation and design phase of the prototype. - Write down what you learned during the testing phase of the prototype. - Write down what you learned during the product introduction phase of the prototype. - Write down what you learned during the product development phase of the prototype.	By having group discussions based on Student Worksheet 3's questions, the lessons are addressed and documented.

Example: Solar Powered Food Dryer

Green STEM Teaching Activity: Solar Powered Food Dryer				
Educational Level: Middle School – High School (10 – 16 years old)				
Subject Area: Green STEM				
Activity Name: Solar Powered Food Dryer				
Gains:				
Science Gains:				
 He discovers that light can be absorbed by matter as a result of its interaction 				
with matter.				
 Gives examples of innovative applications of solar energy in daily life and 				
technology.				
 Discusses the importance of solar energy in terms of effective use of 				
resources.				
Designs projects for economical use of resources.				
 Discusses the ideas he has produced on how to benefit from solar energy in 				
the future.				
 Explains that fossil fuels are one of the limited and non-renewable energy 				
sources.				
• Explains the importance of renewable energy sources.				
 Discusses the effects of using different types of fuels for heating purposes on humans and the environment. 				
Classifies substances in terms of heat conduction.				
 Recognizes the role of water in food in the proliferation of microorganisms. 				
• Recognizes the fole of water in food in the promeration of finctoorganisms.				
Engineering Gains:				
 Explains technologies for obtaining clean and sustainable energy by using 				
natural resources such as water, wind and sun.				
 Designs a product that can generate energy through natural resources using 				
the Engineering Design Cycle.				
 It offers the energy conversion product it has designed. 				
 Tries different design models for more efficient food drying. 				
Technology Gains:				
 Can use a digital thermometer. 				
Can use bacteria kit.				
Can use a digital scale.				
 Can integrate DC Motor into the system. 				
 Can integrate the propeller into the system. 				
Can integrate solar energy panel into the system.				
Mathematics Gains:				
 Measures temperature with a thermometer. 				
 Draws graphs by recording temperature values over time. 				
 Uses different geometric shapes in designs. 				
 Can make measurements using a digital scale. 				
 Can draw graphs from the data obtained. 				
Can calculate percentages.				

Artistic Gains:

- Prepares meals using the principles of sustainable gastronomy (the art of food).
- It uses local cultural motifs to make its designs aesthetic.

Entrepreneurial Gains

- It identifies social needs and produces innovative ideas to meet them.
- They use mass communication channels to promote the product they have developed.

• Expresses and discusses his ideas and findings clearly and consistently to the professional target audience using visual, written and verbal communication methods.

Nature of STEM / Career Gains:

 Assuming oneself as a team member in different roles in the project work o4.Incorporates the best features of each item or solution by analyzing the similarities and differences between various design solutions for a new solution in order to meet success criteria.

 In project work, he assumes himself as a team member in different roles and successfully completes the work required by that role (understands the importance of interdisciplinary work).

• Becomes aware of basic science, technology and engineering disciplines and career opportunities in these fields.

• Researches the fields of study of different disciplines and gets to know current and interdisciplinary professions.

Green STEM Gains:

• Recommends environmentally friendly green science practices to minimize human impact on the environment to solve social needs or problems.

21st Century Skill Gains:

- Improves problem solving skills.
- Improves collaborative working skills (understands that many scientists and engineers work collaboratively in teams).
- His/her sensitivity to the environment and the world he/she lives in increases.

Nature of science (or scientific inquiry) Gains:

• Understands the importance of repeating experiments or measurements in experimental studies.

• Creates or revises scientific explanations based on valid and reliable data or evidence obtained from sources (including students' own experiments).

 Uses valid and reliable data or evidence from a variety of sources (including students' own research, experiments, models, peer evaluations, etc.) to support or evaluate the explanation or conclusion.

 Conducts a study and/or evaluates and/or revises the experimental design to find a solution to the problem and obtain data.

Relevant Green Deal Strategies:

GD3. Clean, Accessible and Safe Energy Supply

a) Applications for the Development of Clean, Domestic and Renewable Energy Resources, especially Wind, Solar and Geothermal, and their Integration with Existing Energy Systems, and thus Reducing Greenhouse Gas Emissions

GD4. Green and Sustainable Agriculture: Sustainable Agriculture from Field to Table g) Innovative Practices for the Dissemination of Sustainable Agriculture Techniques from Field to Table

Theoretical Information:

Preserving fruits and vegetables by drying is a very old preservation method that has been used since ancient times. Since ancient times, fruits and vegetables, and later foods such as tarhana and tomato paste, have been dried in the sun. The purpose of drying is to remove moisture from the food. During drying, the moisture level in the food drops to a level that prevents the growth of microorganisms. Although the sun drying method is a natural and common method, it is a method that takes a long time and is subject to air pollution, microbial contamination and insects, etc. It brings along problems such as exposure to external influences. This situation has brought about the need for the development of more pleasant and hygienic industrial drying machines. Recently developed solar dryers have eliminated the existing negativities and increased energy efficiency by using solar energy as the best alternative energy source to fossil fuels instead of using electrical energy. In these systems, instead of solar energy affecting the product directly, the air circulating around the product is heated with solar energy. Although direct solar dryers are low in cost and easy to produce, temperature control is not possible in these dryers, so when vegetables and fruits are exposed to direct sunlight for a long time, their vitamin values decrease and color loss occurs. Air blow drying systems can provide faster and more homogeneous drying. In this type of dryers, a certain air speed is applied depending on the product and the product has a short drying time.

Keywords:

Solar energy, renewable energy, fossil fuel, sustainability, absorption, insulation, temperature, humidity level, hygiene

Learning Tools:	Tools and Materials to be Used: Large cardboard boxes, fly screen,
Worksheets	cardboard/cardboard, scissors, paper towel roll, aluminum foil,
Digital Tools	transparent tape, stretch film/transparent plastic/glass, black
	background paper, rock wool, glass wool, wood, ruler, digital
	thermometer, digital scale, bacteria kit, knife, plate, various fruits,
	various vegetables, paper tape, solar panel-mini motor-propeller
	set

Literature Resources for Students

Augustus Leon, M., Kumar, S. and Bhattacharya, S.C. (2002). A comprehensive procedure for performance evaluation of solar food dryers, *Renewable and Sustainable Energy Reviews*, 6, 367–393.

Güngör, A. ve Özbalta, N. (2019). Güneş enerjili kurutma teknolojileri ve uygulamalarda gelişmeler. 8. Güneş Enerjisi Sistemleri Sempozyumu ve Sergisi, 8-9 Kasım 2019, Mersin.

Ekechukwu O.V. and Norton, B. (1999). Review of solar-energy drying systems II: an overview of solar drying technology, *Energy Conversion & Management*, 40, 615-655.

Erbay, B. ve Küçüköner, E. (2008). Gıda endüstrisinde kullanılan farklı kurutma sistemleri, *Türkiye 10. Gıda Kongresi*, 21-23 Mayıs 2008, Erzurum.

Sharma, A., Chen, C.R., Lan, N. V., (2009). Solar-energy drying systems: A review, Renewable And Sustainable Energy Reviews, 13, 1185-1210.

Literature Resources for Teachers

Augustus Leon, M., Kumar, S. & Bhattacharya, S.C. (2002). A comprehensive procedure for performance evaluation of solar food dryers, *Renewable and Sustainable Energy Reviews*, 6, 367–393.

Güngör, A. ve Özbalta, N. (2019). Güneş enerjili kurutma teknolojileri ve uygulamalarda gelişmeler. *8. Güneş Enerjisi Sistemleri Sempozyumu ve Sergisi*, 8-9 Kasım 2019, Mersin.
Ekechukwu O.V. and Norton, B. (1999). Review of solar-energy drying systems II: an overview of solar drying technology, *Energy Conversion & Management*, 40, 615-655.
Erbay, B. ve Küçiköner, E. (2008). Gida endüstrisinde kullanılan farklı kurutma sistemleri, *Türkiye 10. Gida Kongresi*, 21-23 Mayıs 2008, Erzurum.
Sharma, A., Chen, C.R., Lan, N. V., (2009). Solar-energy drying systems: A review, *Renewable And Sustainable Energy Reviews*, 13, 1185-1210.

Teaching Problem-Based Learnin		Problem-Based Learning, Inquiry-Research, Project-Based Learning,	
	Methods:	Design Thinking and Engineering Design, (Hands-on Science) Applied	
		Learning, Technology-Assisted Learning	

Stage	Time Require d	Teacher Activity	Student Activity
Defining the Problem	30 minutes	The problem should be included both in the worksheet to be distributed to the students and the problem should be presented to the students by visually projecting it. Students are enabled to read and analyze the problem situation and discuss it with their peers. Thus, the problem situation is diagnosed and defined as a group. At this stage, it is aimed for the students to understand the problem situation. For the activity, heterogeneous groups of students should be formed as much as possible. In study groups, the professions given in the worksheet should be shared and the duties and responsibilities of the student who undertakes each profession should be determined and written down.	Students read and analyze the problem situation presented in the worksheet and discuss it with their peers. In groups, they fully present the problem. Students share the professions given in the worksheet in line with their interests, and responsibilities for each student are determined and recorded in Student
Rememberi ng and Researching	1 hour	In order to reveal their prior knowledge about the problem and possible solution(s), students are asked to write down what they know and their experiences within the framework of the following questions in the Remembering What is Known and Experiences section of Student Worksheet 1.	Information and experiences regarding the questions given regarding the problem situation are

Green STEM Teaching Activity Scenario: Solar Food Dryer

·		
	 What are renewable energy 	recorded as a
	sources?	group in
	 What are the effects of fossil 	Student
	fuels on humans and the	Worksheet 1.
	environment?	Researchable
	 What is the importance of solar 	questions are
	energy?	put forward by
	 Does the color of materials affect 	thinking about
	the amount of absorption of	which
	sunlight? How?	questions need
	 What methods are used to 	to be answered
	preserve food for a long time?	in order to find
	 How can solar energy be used to 	a solution to
	preserve food for a long time?	the problem.
	 Why can foods be stored longer 	Questions are
	when dried?	recorded in
	Under the heading "What Needs to be	Student
	Researched", students are encouraged to	Worksheet 1.
	think about what questions they need to find	The answers to
	answers to in order to find a solution to the	these questions
	problem. For example, "What are	are researched
	environmentally friendly materials?, What	and recorded.
	should be taken into consideration when	The sources
	drying foods?, Can foods be dried at all	used are also
	temperatures?, "What are the moisture	included.
	levels in dried fruits/vegetables?" It is aimed	
	for them to develop researchable questions	
	such as: They are asked to record their	
	questions in Student Worksheet 1.	
	Afterwards, students are asked to research	
	the answers to these questions and write	
	their answers. They are warned to include	
	the sources they use.	
	Kurutma odası	
	Hava çıkar	
	Yalıtım horosona yaşı yaşı yaşı yaşı yaşı yaşı yaşı yaş	
	Gelen güneş ışınımı	
	Absorber yüzey brzen generationsonaugen	
	Cam orti	
	Taze hava	
	girişi yalıtım Yalıtım	
	In the Solution Generation-Product Design	Within the
	phase, the features that the product that	framework of
	students are asked to design must have are	the given
	given in Student Worksheet 2 as design	design criteria,
	criteria.	all ideas
	0	

		Desire Criteria	
		Design Criteria:	considered as
		Food drying should be done with	problem
		solar energy.	solutions are
		It should provide hygienic drying.	put forward
		Factors affecting the negative	and recorded in
		change in the color of foods	Student
		should be taken into account.	Worksheet 2.
		 It should be produced with 	By discussing in
		environmentally friendly	groups, the
		materials.	most
		 It should be able to fit a tray with 	appropriate
		dimensions of 30*30 cm.	idea is
Solution	1 hour	 It must be aestheticized with 	selected.
Generation-		local cultural motifs.	The materials
Product		 A creative recipe must be 	required for
Design		created using dried	the
		fruit/vegetable/tarhana/tomato	implementatio
		paste.	n of the
		Students are given an explanation of the	selected idea
		design criteria. Students are expected to put	are also
		forward all the different ideas they think of	determined.
		for the problem by considering the design	The design of
		criteria and brainstorming. Students should	the product is
		be made aware that there may be more than	explained in
		one correct way to find a solution. They are	detail and a
		asked to record all their ideas in Student	drawing is
		Worksheet 2.	made with
		Afterwards, students should be guided to	measurements
		choose the most appropriate one among the	like an
		ideas and use it to develop a prototype. In	engineer.
		order to improve decision-making skills,	- 8
		"Which of the ideas did you decide to use	
		and why?" They should be made to think by	
		asking questions. At this stage, students are	
		expected to decide what kind of prototype	
		they will make within the design criteria.	
		They are also encouraged to identify the	
		materials needed to implement the chosen	
		idea.	
		All materials required for the event should	
		be prepared in advance.	
		Students should be asked to describe the	
		design of the product in detail and draw it	
		with measurements like an engineer.	
		Students are expected to design a food dryer	
		like the one on the side (<i>it is only given as an</i>	
		example. There may be many different	
		designs that meet the criteria). The shape,	
		visual appearance and materials used of the	

		dryer may vary depending on the creativity	
		of the students and their research.	
		In the Prototyping and Testing phase,	A prototype of
		students are guided to create a prototype of	the product is
		the product by implementing their plans and	created by
		using appropriate materials. They are asked	applying the
		to test the resulting product using	drawing and
		fruits/vegetables. In this process;	using
		-Students are asked how they can determine	appropriate
		the amount of moisture lost in the	materials. The
		fruits/vegetables they use to dry. (Students	resulting
		may suggest determining the initial mass of	product is
		the fruit they are using and the amount of	tested using
		moisture removed by measuring the mass	various
		from time to time during drying. Or they may	fruits/vegetabl
		also suggest using a hygrometer.)	es. In this
		 Students are directed to think about 	process;
		whether foods can be dried at all	-A method is
		temperatures and to use the information	recommended
		they have researched in the previous section	to determine
		to determine what the appropriate ambient	the amount of
		temperature should be for each	moisture lost in
		fruit/vegetable for drying. Students should	fruits/vegetabl
		also be asked questions about how they can	es used for
		achieve this temperature while testing the	drying.
		product.	-The research
		-Students are required to use a period of 3-4	information in
		hours (or more if the conditions are suitable)	the previous
		for drying and to determine the amount and	section is used
		percentage of moisture removed from the	to determine
		fruits/vegetables they sliced and dried at	what the
		certain time periods during this period and	appropriate
Prototyping	5 hours	to draw graphs of the data they obtained	ambient
and Testing		(using digital tool) is requested.	temperature
		- Students are asked to investigate the	should be for
		moisture content of dried fruits/vegetables	each
		and determine approximately how long it	fruit/vegetable
		will take for the fruit/vegetable to dry in the	for drying by considering
		solar food dryer prototype. -At the end of the drying time, students are	whether foods
		directed to determine the amount of	can be dried at
		microorganisms (bacteria) in the dried	all
		fruit/vegetable.	temperatures.
		-Students are also encouraged to obtain the	While testing
		same type of data on open drying in the sun	the product,
		and compare it with their other data to	ideas are
		interpret the advantages and disadvantages	generated on
		of the two methods.	how this
			temperature

	can be
	achieved.
	- The amount
	and percentage
	of moisture
	removed from
	the slicing and
	drying
	fruits/vegetabl
	es are
	determined at
	certain time
	periods
	throughout the
	entire sura. A
	graph of the
	obtained data
	is created
	(using a digital
	tool).
	- By
	investigating
	the moisture
	content of
	dried
	fruits/vegetabl
	es, it is
	determined
	approximately
	how long the
	fruit/vegetable
	used will dry in
	the solar food
	dryer
	prototype.
	-At the end of
	the drying
	time, the
	amount of
	microorganism
	s (bacteria) in
	the dried
	fruit/vegetable
	is measured.
	In addition, the
	same type of
	data is
	obtained
	regarding open
	drying under
· ·	

			the sun and compared with other data, the advantages and disadvantages of the two methods are interpreted.
Product Introduction , Discussion and Evaluation	1 hour	For Product Promotion, Discussion and Evaluation, students are asked to prepare a poster using a digital tool, planning how they will promote their products and inform relevant people, and they are asked to record it in Student Worksheet 2. They are encouraged to include a recipe and visuals of a meal to be prepared from foods dried with the product using the principles of gastronomy (the art of food) in the poster. Afterwards, each group's product is evaluated using the evaluation rubric prepared in accordance with the design criteria and available in the worksheet, under the guidance of the teacher and with the participation of all groups. Depending on the evaluation, it is debatable how much the product solves the problem.	A poster is prepared by planning how the product will be promoted and how the relevant people will be informed. The poster also includes a recipe for a meal to be prepared using the principles of gastronomy (the art of cooking) from foods dried with the product. The product of each group is evaluated using the evaluation rubric in accordance with the design criteria, under the guidance of the teacher and with the participation of all groups. Based on the evaluation, the class discusses how well the product solves the problem. In addition, the advantages and

			disadvantages
			of different
			design
			products
			produced by
			the groups are
			discussed with
			the
			participation of
			the whole
			class.
		Students are asked to discuss among	In order to
		themselves the changes they plan to	improve the
		improve the product and record them in	product,
		Student Worksheet 2.	changes that
			can be made to
Developing	30		the product are
the Product	minutes		planned by
			discussing it in
			a group and
			recorded in
			Student
			Worksheet 2.
		Students are asked to share what they have	What is
		learned by discussing it within the	learned is
		framework of the questions written below	answered
		and record it in Student Worksheet 3.	and
		- Write down what you learned during the	recorded by
		preparation and design phase of the solar	discussing it
		food dryer. - Write down what you learned during the	in groups within the
		prototyping phase of the solar food dryer.	framework
Sharing		- Write down what you learned during the	of the
What I	30	testing phase of the solar food dryer.	questions
Learned		testing phase of the solar lood di yel.	
Leannea	minutes	- Write down what you learned during the	given in
	minutes	- Write down what you learned during the product introduction phase of the solar food	given in Student
	minutes	product introduction phase of the solar food	given in Student Worksheet
	minutes	product introduction phase of the solar food dryer.	Student
	minutes	product introduction phase of the solar food dryer. - Write down what you learned during the	Student Worksheet
	minutes	product introduction phase of the solar food dryer.	Student Worksheet
	minutes	product introduction phase of the solar food dryer. - Write down what you learned during the product development phase of the solar	Student Worksheet
	minutes	product introduction phase of the solar food dryer. - Write down what you learned during the product development phase of the solar food dryer.	Student Worksheet
	minutes	product introduction phase of the solar food dryer. - Write down what you learned during the product development phase of the solar food dryer. - Explain what would be the benefits of	Student Worksheet